

REALI-SLIM® Dünnringlager

REALI-SLIM® - Der Marktführer für Dünnringlager

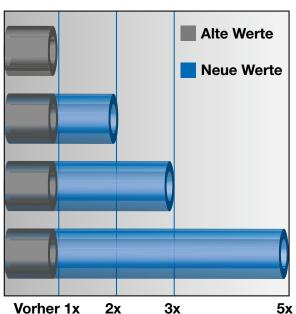
Wenn Ihr Entwicklungskonzept Dünnringlager verlangt, wenden Sie sich an KAYDON®, den Marktführer für Dünnringlager. Unsere REALI-SLIM® Dünnringlager sind optimiert, um Platz zu sparen, Gewicht zu reduzieren, Reibung zu verringern und exzellente Laufgenauigkeit zu gewährleisten. Dies erlaubt ein schlankeres Design, hilft Herstellungskosten zu sparen, ohne auf Lagerlebensdauer oder Leistung zu verzichten.

Der neue RODRIGUEZ® Katalog erleichtert Ihnen die Auswahl des optimalen Dünnringlagers für Ihre Anwendung. Wählen Sie aus unseren bewährten Standardquerschnitten und Bohrungsdurchmessern (bis 1100mm) oder spezifizieren Sie Ihr eigenes Lagerdesign.

Was ist NEU:

• Längere Lagerlebensdauer – Die dynamischen Tragzahlen wurden für nahezu alle Lager erhöht, was die Lagerlebensdauer oft verdoppelt oder verdreifacht! Für unsere Typ X Lager liegen die Erhöhungen zwischen 31% und 77%, bei den Typen C und A bei bis zu 33%. Diese Werte sind nicht nur theoretische Berechnungen, wie bei manch anderen Herstellern... sondern wurden durch umfangreiche Tests sichergestellt. (Siehe Kapitel 3.)

- REALI-SLIM® Drehverbindungen Unsere REALI-SLIM TT™ Serie ist nun auch Bestandteil dieses Katalogs. Diese neue Serie besteht unter härtesten Einsatzbedingungen und bietet ein kompaktes Design, hohe Genauigkeit, schnelle und einfache Installation, sowie Kundenkonfigurationen, um Ihre speziellen Anforderungen zu erfüllen. Sie sind ideal für anspruchsvolle Anwendungen, wie z. B. die Robotertechnik oder Radarantennen.
- Neue Abmessungen 4 neue REALI-SLIM® Dünnringlager und 3 neue REALI-SLIM® Edelstahllager sind jetzt verfügbar und geben Ihnen durch sofortige Verfügbarkeit noch mehr Gestaltungsfreiheit.
- Verbessertes Anwendungsdatenblatt Der Fragebogen am Ende des Katalogs erlaubt Ihnen noch mehr Daten Ihrer Anwendung einzutragen und ermöglicht somit eine schnellere Antwort.


Wir hoffen, dass der neue Katalog für Sie noch nützlicher ist als seine Vorgänger. Weitere technische Daten können Sie auf unserer Website (siehe unten) finden. Weiterhin steht Ihnen die Anwendungstechnik von RODRIGUEZ® jederzeit zur Unterstützung zur Verfügung.

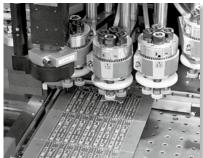
Höhere dynamische Tragzahlen bedeuten längere Lagerlebensdauer

Tragzahlerhöhung

100% 125% 150%

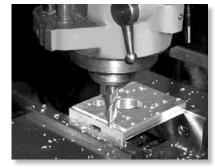
175%

Lebensdauerverbesserung


Für die neuesten Veröffentlichungen – Kataloge, Software oder CAD-Zeichnungen – besuchen Sie unsere Website www.rodriguez.de

Kapitel 1 - Einführung in die REALI-SLIM® Dünnringlager	5
Produktübersicht	6
Entwicklungseffizienz	7
REALI-SLIM® Lager Lastszenarien	8
Allgemeine Informationen und Verfügbarkeit Spezifikationen für Standard REALI-SLIM® Lager	10 11
Bestellschlüssel von REALI-SLIM® Lagern	12
Kapitel 2 - Auswahltabellen für Dünnringlager	14
Offene REALI-SLIM® Lagerauswahl Typ A, C, X – AISI 52100	15
Gedichtete REALI-SLIM® Lagerauswahl Typ C, X – AlSI 52100	27
Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Lagerauswahl Typ A, C, X REALI-SLIM® Edelstahllager Typ A, C, X – AISI 440C	35 49
REALI-SLIM MM™ Metrische Serie Lagerauswahl Typ A, C, X – AlSI 52100	53
ULTRA-SLIM™ Dünnringlager Typ A, C, X	60
REALI-SLIM TT™ Miniaturdrehtischlager Lagerauswahl	62
Kapitel 3 - Anwendungstechnik	65
Lagerauswahl	66
Tragzahlen-, Lebensdauer- und Lastanalyse von REALI-SLIM® Kugellagern	71
Montage	75
Toleranzklassen und empfohlene Passungen für REALI-SLIM® Kugellager in Standardanwendungen	80
Toleranzklassen und empfohlene Passungen für ENDURA-SLIM® Kugellager	85
Toleranzklassen und empfohlenen Passungen für REALI-SLIM MM™ Lager Metrische Serie	90 91
Toleranzklassen und empfohlene Passungen für ULTRA-SLIM™ Lager	91
Kapitel 4 - Käfigtypen, Kugelanzahl und Leistung	92
Auflistung der Käfigtypen, die in REALI-SLIM® Lagern Einsatz finden	93
Käfigtypen	94
Kugelanzahl in Standard REALI-SLIM® Lagern	97
Grenzdrehzahlen Drehmoment	98 100
Startmoment unter Last	101
Axiale Abweichung	102
Axialspiel / Lagerspiel	103
Verformungskurven	104
Kapitel 5 - Einbau und Wartung	110
Inspektion und Einbauverfahren für REALI-SLIM® Dünnringlager	111
Schmierung und Wartung von REALI-SLIM® Dünnringlagern	113
Kapitel 6 - Weitere Produkte	115
Metrische Serie Kugellager (BB Serie)	116
Lager für extreme Umgebungsbedingungen	119
KT Serie Kegelrollenlager	121
Kapitel 7 - Anhang und Informationen	122
Begriffe und Definitionen	123
Anhang	124
Kataloganforderung	125
Anwendungsspezifikationen	126
RODRIGUEZ® GMBH	131
Die Auslegungen und Anwendungsinformationen in diesem Katalog dienen nur Illustrationszwecken. Die Verantwortung fr	ür den Finsatz


der Produkte aus diesem Katalog liegt ausschließlich beim Konstrukteur oder Anwender. Trotz aller Sorgfalt können Fehler nicht


ausgeschlossen werden.

REALI-SLIM®... Für kompakte, leichte Entwicklungen der Zukunft

Halbleiterfertigung

Werkzeugmaschinen

Drehtische

- Luft- und Raumfahrt
- Montageequipment
- Lebensmittelindustrie
- Glasbearbeitung
- Index- und Drehtische
- Verpackungsmaschinen
- Werkzeugmaschinen
- Medizintechnik
- Optische Scanner
- Reifenindustrie
- Radar, Satelliten- und Kommunikationstechnik
- Robotik
- Textilmaschinen
- Schlauch- und Rohrtrennmaschinen
- Halbleiterindustrie
- Sortieranlagen

Textildruckmaschinen

REALI-SLIM® Lager wurden entwickelt, um den Bedarf an gehärteten, dünnwandigen Wälzlagern zu erfüllen - ein Bedarf, der aus den modernen Entwicklungskonzepten vieler rotativer Anwendungen entstand : Schlichtheit, Miniaturisierung, Gewichtsreduzierung und Kompaktheit.

Radar

Robotik Silicon Wafer Fertigung

Sichtgeräte & FLIRs

Vor der Einführung von REALI-SLIM® Lagern mussten Entwickler auf Gleitbuchsen zurückgreifen oder aus den kleinsten verfügbaren Standardserien auswählen, von denen viele ungeeignete Querschnitte oder zu hohes Gewicht hatten.

REALI-SLIM® Lager beseitigen diese Probleme bei Lagern, Wellen und Gehäusen.

Einführung in die REALI-SLIM® Dünnringlager

Produktubersicht	6
Entwicklungseffizienz	7
REALI-SLIM® Lager Lastszenarien	8
Allgemeine Informationen und Verfügbarkeit	10
Spezifikationen für Standard REALI-SLIM® Lager	11
Bestellschlüssel von REALI-SLIM® Lagern	12

Produktübersicht

Die REALI-SLIM® Produktlinie enthält eine Gruppe von sieben offenen (Bild 1-1) und fünf gedichteten (Bild 1-2) Serien von Dünnringlagern im Durchmesserbereich von 25,4 mm bis 1016 mm bei Querschnitten von 4,7625 x 4,762 mm bis 25,4 x 25,4 mm. Offene Lager sind ab Lager in drei Varianten lieferbar (Typen A, C & X). Gedichtete Lager sind in den Typen C & X ab Lager lieferbar.

Um die am häufigsten verlangten Varianten abzudecken, können wir interne Vorspannung, Sonderbefettungen, Käfige und andere Sonderlösungen anbieten. Um Korrosionsbeständigkeit zu erreichen, können Edelstahl REALI-SLIM® oder ENDURA-SLIM® Lager verwendet werden. ENDURAKOTE® Beschichtung bietet Korrosionsschutz vergleichbar oder besser als AISI 440C Volledelstahllager und ist kurzfristig lieferbar.

Weitere Produktvarianten sind: REALI-SLIM MM™ METRI-SCHE SERIE, ULTRA-SLIM® Lager, und REALI-SLIM TT™ Drehverbindungen (Kapitel 2) sowie BB metrische Kugellager für härteste Einsatzbedingungen und KT Kegelrollenlager mit kleinem Querschnitt (Kapitel 6).

Um unterschiedlichen Einsatzbedingungen gerecht zu werden, sind REALI-SLIM® Lager in drei Grundtypen lieferbar: Radialkugellager (Typ C), Schrägkugellager (Typ A) und 4-Punktlager (Typ X)–siehe Seiten 8 und 9 für die jeweilige Erklärung - sowie in unterschiedlichen Querschnitten (z.B. KA, KB, KC, etc.).

REALI-SLIM® Lager sind mit verschiedenen Käfigoptionen verfügbar.

Spezifikationsdatenblatt

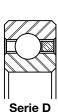
Heutzutage ist Produkttransparenz extrem wichtig. Um dem gerecht zu werden, ist die Anforderung eines Spezifikationsblatts für ein REALI-SLIM® Lager eine Option.

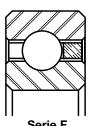
Ein Datenblatt bietet dem Anwender die knappe Beschreibung der wichtigsten Lagerdaten und Parameter für ein bestimmtes Lager. Bei einer Zeichnungsanfrage wird eine spezielle Zeichnungsnummer für ein REALI-SLIM® Lager mit den zusätzlich von Ihnen gewählten Optionen erstellt. Dies ermöglicht dem Kunden die schnelle und einfache Identifikation des Produkts und bietet gleichzeitig ein übersichtliches Inspektionsdokument für die Fertigung.

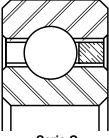
Die Produktübersicht auf einen Blick

Offene Lager - Bild 1-1

Serie AA 4,7625 x 4,7625 mm


Serie A 6,35 x 6,35 mm


Serie B 7,9375 x 7,9375 mm


Serie C 9,525 x 9,525 mm

Serie D 12,70 x 12,70 mm

Serie F 19,05 x 19,05 mm

Serie G 25,40 x 25,40 mm

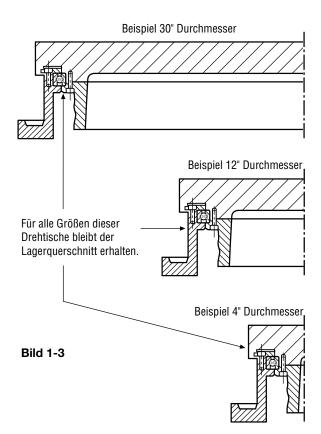
Gedichtete Lager - Bild 1-2

Serie JHA 6,35 x 4,7625 mm

Serie JA 6,35 x 6,35 mm

Serie JB 7,9375 x 7,9375 mm

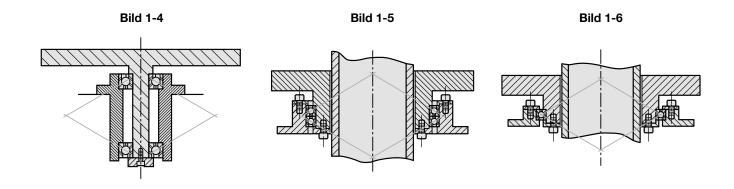
Serie JU 12,70 x 9,525 mm


Serie JG 25,40 x 25,40 mm

Entwicklungseffizienz

REALI-SLIM® Lager verbessern die Entwicklungseffizienz

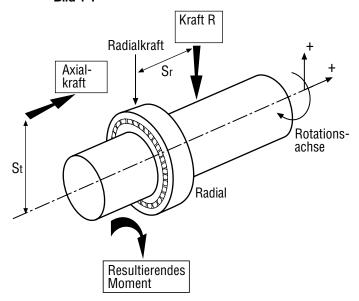
Die REALI-SLIM® Lager sind insoweit einzigartig, dass jede Serie auf einem einzigen Querschnitt basiert, der mit steigendem Bohrungsdurchmesser konstant bleibt.


Hier ist die klare Abgrenzung gegenüber Standard Lagern, bei denen der Querschnitt mit dem Innendurchmesser ansteigt. Der konstante Querschnitt der REALI-SLIM® Lager ist von besonderer Bedeutung bei Produkten, die in unterschiedlichen Größen basierend auf Wellendurchmesser und Belastungsanforderungen gefertigt werden (Bild 1-3). Bei Verwendung der gleichen REALI-SLIM® Lagerserie innerhalb der Produktlinie, kann der Entwickler gemeinsame Komponenten standardisieren. Alle Durchmesser dieses Drehtisches haben den selben Lagerguerschnitt.

REALI-SLIM® Lager ermöglichen ein kompaktes Design

Weitere Vorteile bei Anwendungen, die durch die Verwendung von REALI-SLIM® Lagern ermöglicht wurden, sind in den Zeichnungen 1-4, 1-5 und 1-6 zu sehen. Ein großer Bohrungsdurchmesser bei kleinem Querschnitt ermöglichen die Verwendung von Hohlwellen mit großem Durchmesser (Bild 1-5) an Stelle einer kleinerern Vollwelle (Bild 1-4), wie beim klassischen "king-post Design". Komponenten, wie Luft- und Hydraulikleitungen oder elektrische Verkabelungen und Schleifringe, können in der Hohlwelle angeordnet werden und bieten ein übersichtliches, effizienteres Design.

In vielen Anwendungsfällen kann der Einsatz eines Vierpunkt- REALI-SLIM® Lagers (Bild 1-6) zwei Lager (Bilder 1-4 und 1-5) ersetzen, was zu einer kompakten Bauweise führt und die Montage vereinfacht. Zusätzlich zu der Kostenersparnis durch Wegfallen eines Lagers, bietet diese Anordnung Platz- und Gewichtsersparnis. Die Verwendung von REALI-SLIM® Lagern bietet zusätzlich eine steifere Konstruktion durch die Verwendung einer großen Hohlwelle als Ersatz für Vollwellen und durch die Unterstützung der rotierenden Struktur (Abbildung) der Peripherie.



REALI-SLIM® Lager unterstützen alle Lastszenarien

Radial- und Axiallasten

Wälzlager ermöglichen der Welle oder dem Gehäuse eine freie Bewegung um die Rotationsachse. Lasten können das Lager in zwei Grundrichtungen beeinflussen (Bild 1-7). Radiallasten wirken im rechten Winkel zur Welle (Rotationsachse des Lagers), Axiallasten wirken parallel zur Rotationsachse. Wenn diese Lasten außerhalb der jeweiligen Achse (Abstand St) oder radial versetzt (Abstand Sr) auftreten, wird ein resultierendes Moment (M) erzeugt. REALI-SLIM® Lager gibt es in unterschiedlichen Varianten, um radiale, axiale und Momentenlasten aufzunehmen.

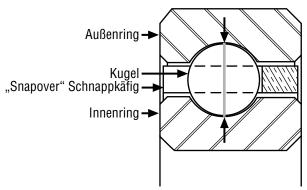
Bild 1-7

Gleichung resultierende Momentenlast (M): $M = (\pm T) (S_t) + (\pm R) (S_r)$

REALI-SLIM® Lagertypen

REALI-SLIM® Lager sind in drei Grundtypen verfügbar: Radialkugellager (Typ C), Schrägkugellager (Typ A) und Vierpunktlager (Typ X).

REALI-SLIM [®] Lagertypen								
A = Schrägkugellager								
C = Radialkugellager								
X = Vierpunktlager								


Durch die Verwendung dieser drei Typen hat der Kunde eine breite Auswahl an Möglichkeiten, um effektiv den Anforderungen an Last, Steifigkeit und Genauigkeit zu genügen.

Radialkugellager (Typ C)

Das Radialkugellager Typ C (Bild 1-8) ist ein einreihiges Radialkugellager koventioneller Bauart. In der Regel wird dieses Lager zusammengebaut, indem der innere Laufring gegenüber dem äußeren exzentrisch verschoben wird, so daß etwa die Hälfte eines vollen Kugelsatzes eingebracht werden kann. Danach werden die Ringe in ihre konzentrische Lage verschoben und die Kugeln gleichmäßig auf den Umfang verteilt, so daß der Käfig montiert werden kann. Diese Art des Zusammenbaus wird im allgemeinen als "Conrad-Verfahren" bezeichnet.

REALI-SLIM® TYP C

Bild 1-8

Obwohl das Lager Typ C vorrangig für Anwendungen mit Radiallasten ausgelegt wurde, kann es bis zu einem bestimmten Grad auch Axiallasten in beide Richtungen aufnehmen. Sind die Axiallasten jedoch von Bedeutung, sollte für solche Anwendungen ein Schrägkugellager in Betracht gezogen werden.

REALI-SLIM® Lager unterstützen alle Lastszenarien (Fortsetzung)

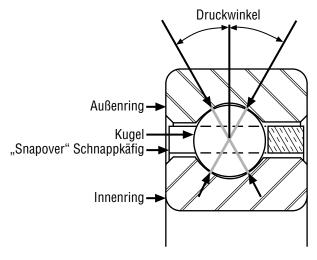
Schrägkugellager (Typ A)

Der Lagertyp A ist ebenfalls konventioneller Bauart. Die wesentlichen Merkmale sind ein geschlossener Käfig sowie ein 30° Druckwinkel (siehe Bild 1-9) in Verbindung mit einem Befüllungsgrad mit Kugeln von ca. 67%.

Der wesentliche Vorteil des Lagertyps A ist, dass viel höhere Axiallasten als beim Lagertyp C oder Typ X aufgenommen werden können. Durch den zurückgeschliffenen Außenring können Lager des Typs A nur einseitig wirkende Axiallasten aufnehmen. Um Axialkräfte in beiden Richtungen aufnehmen zu können, müssen zwei dieser Lager gegeneinander angestellt werden.

REALI-SLIM® TYP A

Bild 1-9


Vierpunktlager (Typ X)

Standard Lagerserien sind oft darauf ausgelegt, entweder axiale oder radiale Kräfte aufzunehmen. Die einzigartige Eigenschaft der REALI-SLIM® Typ X Vierpunktlagerserie (siehe Bild 1-10) ist, dass durch das unverwechselbare "Spitzbogenprofil" des Innen- und Außenrings ein einzelnes Lager drei Arten von Belastungen (radiale, axiale und Momentenlasten) gleichzeitig aufnehmen kann. Das macht das Lager zur ersten Wahl für zahlreiche Anwendungen, da ein einzelnes Vierpunktlager oft zwei Lager ersetzen kann und somit für eine einfachere Lagergestaltung sorgt.

Für Anwendungen, mit höherer Steifigkeit oder ohne Lagerspiel, können Typ X Lager auch mit interner Vorspannung geliefert werden. Dies wird erreicht, indem man Kugeln mit einem größeren Durchmesser verwendet als eigentlich Platz zwischen den Laufbahnen vorhanden wäre. Die Kugeln und Laufbahnen erfahren dadurch im unbelasteten Zustand eine elastische Verformung.

REALI-SLIM® TYP X

Bild 1-10

Bemerkung:

Wegen zu hoher Reibmomente rät KAYDON® vom Einsatz zweier Lager vom Typ X auf einer Welle ab.

Allgemeine Informationen und Verfügbarkeit

Standard REALI-SLIM® Lager sind in der Serientabelle gelistet. Sie werden gemäß Präzisionsklasse 1 und den Spezifikationen auf Seite 11 gefertigt. Neue Abmessungen kommen von Zeit zu Zeit hinzu und werden periodisch auf unserer Website aktualisiert.

Die neuesten Informationen erhalten Sie unter www.rodriguez.de.

Optionen

REALI-SLIM® Lager können für Ihre speziellen Anforderungen optimiert werden. Standardoptionen beinhalten: Änderungen des Lagerspiels, Vorspannung, Schmierung, Verpackung, Markierungen der Hochpunkte, Markierungen mit Istwerten, Käfigänderungen, Paaren von Lagern, Datenblätter, Erstmusterprüfungen, etc.

REALI-SLIM® Lager sind weiterhin lieferbar in Nicht-Standard-Materialien, -Abmessungen, -Toleranzen, -Spezifikationen und -Charakteristiken. Gerne bieten wir entsprechend Ihren Anforderungen an.

REALI-SLIM® Bestellbezeichnungen nach Teilenummern finden Sie in der Serientabelle.

Unterstützung bei der Lagerauswahl erhalten Sie auf Anfrage bei unserer Anwendungstechnik.

Wir behalten uns das Recht vor, ohne Mitteilung Spezifikationen oder andere Informationen in diesem Katalog zu ändern.

Bild 1-11

Diese Tabelle enthält AISI 52100 Standard Lager. Edelstahllager siehe Kapitel 2.

														Во	hrur	ıgsd	urcl	ıme	sser	in n	nm												
Serie	Type	25,40	38,10	44,45	50,80	63,50	76,20	88,90	101,60	107,95	114,30	120,65	127,00	139,70	152,40	165,10	177,80	190,50	203,20	228,60	254,00	279,40	304,80	355,60	406,40	457,20	208,00	533,40	558,80	635,00	762,00	889,00	1016.00
JHA Serie	Α																																
4,7625 mm	С	•	•	•																													
Querschnitt	X	•	•	•																													
KAA Serie	Α	•	•	•																													
4,7625 mm	С	•	•	•																													Π
Querschnitt	Х	•	•	•																													
JA Serie	Α																																
6,3500 mm	С				•	•	•	•	•	•	•	0	•	0	0	0																	
Querschnitt	X				•	•	•	•	•	•	•	0	•	0	0	•																	П
KA Serie	Α				•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	0	•	0	0										П
6,3500 mm	С				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•										
Querschnitt	Х				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•										Г
JB Serie	Α																																Г
7,9375 mm	С				•	•	•	•	•	•	•	0	0	0	0	0																	
Querschnitt	Х				•	•	•	•	•	•	•	0	0	0	0	0																	
KB Serie	Α				•	•	•	•	•	•	0	0	0	•	•	0	0	0	0	•	0	0	0	0	0	0	0						П
7,9375 mm	С				•	•	•	•	•	•	•	0	•	0	•	•	0	0	•	0	0	0	0	0	0	0	0						Г
Querschnitt	Х				•	•	•	•	•	•	•	0	•	•	•	•	0	0	•	•	0	0	0	0	•	0	0						Г
KC Serie	Α								•	0	•	•	•	•	•	0	•	0	•	0	0	0	0	0	0	0	0			0	0		
9,5250 mm	С								•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	0	0			0	0		П
Querschnitt	Х								•	0	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	0	0			0	0		Г
JU Serie	Α																														\Box		Г
9,5250 mm	С								•	•	•	•	•	•	•	•	•	•	•	•	•	•	•										Г
Querschnitt	Х								•	•	•	•	•	•	•	•	•	•	•	•	•	•	•										Г
KD Serie	Α								•	•	•	•	•	•	•	•	•	•	•	•	0	0	•	0	0	0	0	0		0	0		П
12,7000 mm	С								•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	0	0	0	0		0	0		Г
Querschnitt	Х								•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	0		0	0		Г
KF Serie	Α								0	0	0	•	0	•	•	•	0	•	•	•	•	0	•	0	0	0	0			0	0	0	0
19,0500 mm	С								•	•	0	•	•	•	•	•	0	•	•	•	•	•	•	0	0	0	0			0	0	0	0
Querschnitt	X								•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	0	0			0	0	0	0
JG Serie	Α																																
25,4000 mm	С																						0	0	0	0	0		0	0	0	0	0
Querschnitt	X																						0	0	0	0	0		0	0	0	0	0
KG Serie	Α								0	0	0	0	0	0	•	0	0	•	•	•	•	0	•	•	•	•	•		0	0	0	•	0
25,4000 mm	С								0	0	0	0	•	0	0	•	0	•	•	•	•	•	•	•	•	•	•		0	0	0	0	0
Querschnitt	X				\vdash	t			0	0	0	0	•	0	•	0	0	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•

• Ab Lager lieferbar o Eingeschränkte Verfügbarkeit – Kontaktieren Sie uns bezüglich Lieferzeit und Mindestmengen.

Spezifikationen für Standard REALI-SLIM® Lager

	BESCHREIBUNG	REFERENZ SPEZIFIKATION
	MATERIAL ANALYSE	
LAUFBAHN;KUGEL	AISI 52100 Stahl AISI 440C Edelstahl	ASTM A-295, AMS-STD-66 ASTM A-756
KÄFIGE Typ C, X LAGER	Typ P – Messing oder nichtmetallischer Werkstoff Typ L – Nylon, fiberglasverstärkt	ASTM B-36 oder B-134
Typ A LAGER	Typ R – Messing oder nichtmetallischer Werkstoff Typ G – Nylon, fiberglasverstärkt	ASTM B-36 oder B-134
DICHTUNGEN	Nitril Elastomer, 70 Shore, stahlverstärkt	MIL-R 6855
	WÄRMEBEHANDLUNG	
LAUFBAHN	Durchgehärtet und stabilisiert für den Einsatz von -54°C bis +121°C (-65°F bis +250°F)	
KUGEL	AISI 52100-gehärtet Rc 62-66, AISI 440C-bis Rc 58-65	
LAUEDAUM C	PRÄZISION	ADMA ADEC 45
LAUFBAHN Abmessung	KAYDON Präzisionsklasse 1	ABMA ABEC-1F oder besser
LAUFBAHN Rundlauf	KAYDON Präzisionsklasse 1	ABMA ABEC-1F oder besser
KUGEL	ABMA Grad 10	ANSI/ABMA/ISO 3290
	LAGERSPIEL UND KONTAKTWINKEL	
TYP C LAGER	Ausreichendes Lagerspiel, um nach Montage in die empfohlenen Passungen ein leichtes Lagerspiel für leichten Lauf zu bieten.	
TYP X LAGER	Spitzbogenprofil mit zwei 30° Kontaktwinkeln mit leichter radialer Verpressung. Ausreichendes Lagerspiel, um nach Montage in die empfohlenen Passungen ein leichtes Lagerspiel für leichten Lauf zu bieten.	ABMA Standard 26.2
TYP A LAGER	Lagerspiel bei 30° Kontaktwinkel in einzeln unmontierten Lagern bei leichter axialer Verpressung. Für gepaarte Lager großer Bereich möglicher Vorspannung oder Lagerspiel	
	KÄFIGDESIGN	
P & L TYPEN Typ C, X LAGER	Geschlossener Ring, wird zur Positionierung über die Kugeln "geschnappt"	
R & G TYPEN		
Typ A LAGER	Geschlossener Ring, geschlossene Taschen, selbsthaltend	
	SONSTIGES	
QUALITÄTSKONTROLLE	KAYDON Qualitätswesen erfüllt die Anforderungen der öffentli- chen Auftraggeber sowie der führenden Luftfahrtindustrie	ISO 9001
IDENTIFIKATION	Am Lageraußendurchmesser: Käfigcode, "KAYDON®", Teilenummer und Herstelldatum	MIL-STD-130
REINIGUNG	Mehrfaches Tauchen und Spülen in Lösungsmittel und/oder wasserlöslichen Reinigern	
KONSERVIERUNG	Konservierungsöl	
VERPACKUNG	Wärmeverschweißt in Plastikbeutel & Boxen	
	·	

Bemerkung – auch möglich: Qualitätskontrolle per MIL-Q-9858, Verpackungs- und Schmiermitteloptionen und "Clean Room" Fertigung.

Bestellschlüssel von REALI-SLIM® Lagern

REALI-SLIM® Lager sind zur Identifizierung mit einer 8- oder 9-stelligen Teilenummer markiert. Positionen 1-8 identifizieren das Material, Abmessung, Typ und Präzision. Position 9 (optional) identifiziert interne Vorspannung/Spiel (nicht Standard).

Beispiel Bestellschlüssel - Bild 1-12

Position	1	2	3	4	5	6	7	8	9
Legende	Material	Serie		Abmessung		Туре	Käfig	Präzision	Vorspannung/ Spiel
Beispiel	K	G	1	2	0	Х	Р	0	L

Position 1 – Materia	P	osition	1 -	Mate	rial
----------------------	---	---------	-----	------	------

Position i – Material	
Laufbahnen/Kugeln	Dichtungen/Deckel
A AISI 52100 Stahl	Eine Dichtung – PTFE
B AISI 52100 Stahl	Zwei Dichtungen – PTFE
D AISI 52100 Stahl	Ein Deckel
E AISI 52100 Stahl	Zwei Deckel
F AISI 52100 Stahl	Eine Dichtung – Nitril Elastomer LAMI-SEAL®
G AISI 52100 Stahl	Zwei Dichtungen – Nitril Elastomer LAMI-SEAL®
H AISI 52100 Stahl	Eine Dichtung – Nitril Elastomer
J AISI 52100 Stahl	Zwei Dichtungen – Nitril Elastomer
K AISI 52100 Stahl	Ungedichtet
L AISI 52100 Stahl	Zwei Dichtungen und ENDURAKOTE® Beschich- tung
M M-50 Stahl	Ungedichtet
N AISI 52100 Stahl	Ungedichtet und ENDURAKOTE® Beschich- tung
P AISI 17-4PH Stahl	Ungedichtet mit Keramikku- geln (siehe Kapitel 6)
Q AISI 52100 Stahl	Ungedichtet
S AISI 440C Edelstahl	Ungedichtet
T AISI 440C Edelstahl	Eine Dichtung – PTFE
U AISI 440C Edelstahl	Zwei Dichtungen – PTFE
V AISI 440C Edelstahl	Zwei Deckel
W AISI 440C Edelstahl	Zwei Dichtungen – Nitril Elastomer
X AISI 52100 Stahl	Ungedichtet mit Keramikku- geln
Y AISI 440C Edelstahl	Ungedichtet mit Keramikku- geln (siehe Kapitel 6)
Z Sonstiges/Zeichnung	

Position 2 - Querschnittsserien

Standard A *4,750 x 4,750 Querschnitt oder 6,350 x 6,350 B 7,930 x 7,930 C 9,520 x 9,520 D 12,700 x 12,700	
B 7,930 x 7,930 C 9,520 x 9,520	
C 9.520 x 9.520	
=	
E 15,870 x 15,870 F 19,050 x 19,050	
F 19,050 x 19,050	
G 25,400 x 25,400	
Höhe H *4,750 x 6,350	
oder 6,350 x 7,930	
I 7,930 x 9,520	
J 9,252 x 11,100	
K 12,700 x 14,680	
L 15,870 x 18,470	
M 19,050 x 22,220	
N 25,400 x 30,150	
Extra S *4,750 x 7,930	
Höhe oder 6,350 x 9,520	
T 7,930 x 11,100	
U 9,520 x 12,700	
V 12,700 x 16,660	
W 15,870 x 21,030	
X 19,050 x 25,400	
Y 25,400 x 34,920	

*kleinerer Querschnitt, wenn Position 3 ein Buchstabe ist – siehe folgende Erklärungen der Positionen 3, 4 und 5.

Bestellschlüssel von REALI-SLIM® Lagern (Fortsetzung)

Position 3, 4 und 5 - Größe (Lagerinnendurchmesser)

Numerische Charakteristik

Nominaler Lagerinnendurchmesser in Zoll multipliziert mit zehn

Alphabetische Charakteristik

"A" In Position 3 in Kombination mit "A" in Position 2 kennzeichnet die $4,76 \times 4,76$ Serie

"A" In Position 3 in Kombination mit "H" in Position 2 kennzeichnet die 4.76×6.35 Serie

"A" In Position 3 in Kombination mit "S" in Position 2 kennzeichnet die $4,76 \times 7,94$ Serie

Beispiele

040 = 4,0" Bohrung = 101,6 mm

120 = 12,0" Bohrung = 304,8 mm

400 = 40,0" Bohrung = 1106,0 mm

"10" folgt "AA" in Positionen 2 & $3 = 4,76 \times 4,76$ Serie mit 1,0" Bohrung (25,4 mm)

",15" folgt ",HA" in Positionen 2 & $3 = 4,76 \times 6,35$ Serie mit 1,5" Bohrung (38,1 mm)

Position 6 - Lagertyp (siehe Kapitel 3)

- A = Schrägkugellager/Einzel: (Nicht in Universalausführung)
- B = Schrägkugellager/Paar: O-Anordnung
- C = Radialkugellager
- F = Schrägkugellager/Paar: X-Anordnung
- T = Schrägkugellager/Paar: Tandem-Anordnung
- U = Schrägkugellager/Einzel: Universalausführung
- X = Vierpunktlager
- Z = Andere

Position 7 - Käfig (siehe Kapitel 4)

- C Segment-Schnappkäfig, nichtmetallisch
- D Einteiliger Schnappkäfig aus Phenolharz
- E Segment-Schnappkäfig aus Messing
- F Vollkugelig kein Käfig
- G Einteiliger Kugeltaschenkäfig aus Nylon
- H Einteiliger Kugeltaschenkäfig aus Phenolharz
- J Kugeltaschenkäfig-Band aus Nylon
- K Zweiteiliger, genieteter Kugeltaschenkäfig aus Phenolharz
- L Einteiliger Schnappkäfig aus Nylon
- M Draht-Schnappkäfig als Band oder Segment
- N Schnappkäfig aus Nylon
- P Standard-Schnappkäfig aus Messing oder nichtmetallischem Material
- Q Peek-Kugeltaschenkäfig
- R Standard-Kugeltaschenkäfig aus Messing oder nichtmetallischem Material
- S Helical coil Spiralfedern
- T Schnappkäfig aus Edelstahl
- U Kugeltaschenkäfig aus Edelstahl
- V Schnappkäfig aus Messing
- W Draht-Schnappkäfig als Band oder Segment
- X Peek-Schnappkäfig
- Y Kugeltaschenkäfig aus Messing
- Z Sonstige (Toroids, Slugs, Distanzkugeln...)

Position 8 - Präzision (siehe Kapitel 3)

(ABEC Spezifikationen gemäß ABMA Standard 26.2)

- 0 KAYDON® Präzionsklasse 1 per ABEC 1F
- 1 KAYDON® Präzionsklasse 1 mit Rundlaufgenauigkeit Klasse 4
- 2 KAYDON® Präzionsklasse 1 mit Rundlaufgenauigkeit Klasse 6
- 3 KAYDON® Präzionsklasse 3 per ABEC 3F
- 4 KAYDON® Präzionsklasse 4 per ABEC 5F
- 6 KAYDON® Präzionsklasse 6 per ABEC 7F
- 8 Sonstige

Position 9 - Vorspannung/Lagerspiel

- A 0,000 bis 0,012 Lagerspiel
- B 0,000 bis 0,025 Lagerspiel
- C 0,012 bis 0,025 Lagerspiel
- D 0,012 bis 0,038 Lagerspiel
- E 0,025 bis 0,051 Lagerspiel
- F 0,038 bis 0,063 Lagerspiel
- G 0,051 bis 0,076 Lagerspiel
- H 0,076 bis 0,102 Lagerspiel
- I 0,102 bis 0,127 Lagerspiel
- J 0,127 bis 0,152 Lagerspiel
- K 0,000 bis 0,012 Vorspannung
- L 0,000 bis 0,025 Vorspannung
- M 0,012 bis 0,025 Vorspannung
- N 0,012 bis 0,038 Vorspannung
- P 0,025 bis 0,051 Vorspannung
- Q 0,025 bis 0,038 Vorspannung R 0,038 bis 0,063 Vorspannung
- S 0,051 bis 0,076 Vorspannung
- Z Spezielles Lagerspiel oder Vorspannung
- Typ X oder C = Radiales Lagerspiel oder Vorspannung
- Gepaarte Lager Typ A = Axiales Lagerspiel oder Vorspannung

Bemerkung: Oben genannte Werte gelten für unmontierte Lager. Einbaumaße haben großen Einfluss auf das interne Lagerspiel.

Auswahltabellen für Standard REALI-SLIM® Lager

Offene REALI-SLIM® Lagerauswahl Typ A, C, X – AISI 52100	15
Gedichtete REALI-SLIM® Lagerauswahl Typ C, X – AISI 52100	27
Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Lagerauswahl Typ A, C, X	35
REALI-SLIM® Edelstahllager Typ A, C, X – AISI 440C	49
REALI-SLIM MM™ Metrische Serie Lagerauswahl Typ A, C, X – AISI 52100	53
ULTRA-SLIM™ Dünnringlager Typ A, C, X	60
RFALI-SLIM TT™ Miniaturdrehtischlager Lagerauswahl	62

Offene REALI-SLIM® Lagerauswahl Typ A Schrägkugellager

Ein Lager mit tiefen Laufbahnen und am Innen- oder Außenring einseitig zurückgeschliffenem Lagerring. Die Schnapp-Montage erlaubt die Verwendung eines einteiligen Kugeltaschenkäfigs mit einer höheren Anzahl von Kugeln. Diese Lager können radiale und einseitig wirkende axiale Kräfte aufnehmen und werden normalerweise zusammen mit einem weiteren Lager gleicher Bauart eingesetzt. Zu Ihrer Funktion benötigen Lager des Typs

A eine Axiallast. Um das gewünschte Lagerspiel/Lagervorspannung zu erreichen, müssen Einzellager bei der Montage zueinander eingestellt werden. Falls gewünscht, liefern wir Lagerpaare oder die passenden Distanzringe für Anwendungen, die höchste Präzision verlangen. Wir bieten diesen Service direkt ab Werk an.

	KAA SERIE												
		Abme	essungen ir	n mm			Tragzah	len in N ^①			,		
KAYDON Lager			<i>~</i> .		٠.	Rac	dial	Axial		Gewicht in kg	4,7625		
Layei	Bohrung	Außen-Ø	Ø L ₁	Ø L ₂	Ø L₃	statisch ²	dyn.	statisch ²	dyn.	III NY	F — 4,7625		
KAA10AG0	25,400	34,925	28,956	31,369	32,360	1.512	863	4.315	2.002	0,01	1 A A B - 4-1,1025		
KAA15AG0	38,100	47,625	41,656	44,069	45,060	2.135	1.059	6.139	2.491	0,02	L ₂ L ₁ L ₃ L ₃		
KAA17AG0	44,450	53,975	48,006	50,419	51,410	2.358	1.117	6.761	2.669	0,02	③F = 0,38		

	KA SERIE													
		Abm	essungen iı	n mm			Tragzah	len in N ^①			3,175 mm Kugeln			
KAYDON Lager	D-1	A 0	<i>α</i> .	a .	<i>α</i> .	Rac	lial	Ax	ial	Gewicht in kg				
Lagoi	Bohrung	Außen-Ø	Ø L ₁	Ø L ₂	Ø L₃	statisch ²	dyn.	statisch ²	dyn.	III Kg				
KA020AR0	50,800	63,500	55,524	58,776	60,173	3.514	1.802	10.142	4.270	0,05				
KA025AR0	63,500	76,200	68,224	71,476	72,873	4.270	2.042	12.366	4.893	0,05				
KA030AR0	76,200	88,900	80,924	84,176	85,522	5.071	2.255	14.635	5.471	0,06				
KA035AR0	88,900	101,600	93,624	96,876	98,222	5.827	2.455	16.859	6.005	0,08	6,35 —			
KA040AR0	101,600	114,300	106,324	109,576	110,922	6.628	2.647	19.127	6.539	0,09	F —			
KA042AR0	107,950	120,650	112,674	115,926	117,221	7.028	2.740	20.239	6.806	0,09	<u> </u>			
KA045AR0	114,300	127,000	119,024	122,276	123,571	7.384	2.834	21.396	7.028	0,10				
KA047AR0	120,650	133,350	125,374	128,626	129,921	7.784	2.922	22.508	7.295	0,10				
KA050AR0	127,000	139,700	131,724	134,976	136,271	8.185	3.007	23.620	7.517	0,10	L2 L1			
KA055AR0	139,700	152,400	144,424	147,676	148,920	8.985	3.180	25.889	8.007	0,11				
KA060AR0	152,400	165,100	157,124	160,376	161,620	9.742	3.345	28.113	8.452	0,13				
KA065AR0	165,100	177,800	169,824	173,076	174,269	10.542	3.505	30.381	8.896	0,14				
KA070AR0	177,800	190,500	182,524	185,776	186,969	11.298	3.661	32.650	9.341	0,15				
KA075AR0	190,500	203,200	195,224	198,476	199,669	12.099	3.812	34.874	9.742	0,15				
*KA080AR0	203,200	215,900	207,924	211,176	212,319	12.855	3.959	37.143	10.142	0,16				
*KA090AR0	228,600	241,300	233,324	236,576	237,668	14.412	4.244	41.635	10.987	0,19				
KA100AR0	254,000	266,700	258,724	261,976	263,017	15.969	4.510	46.128	11.743	0,20	0 5 0 0 4			
*KA110AR0	279,400	292,100	284,124	287,376	288,366	17.526	4.768	50.621	12.499	0,23	③ F = 0,64 Alle Kanten gefast			
*KA120AR0	304,800	317,500	309,524	312,776	313,665	19.083	5.018	55.113	13.211	0,24	7 mo Ranton golast			

Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

Engeschrankte verugbarkeit – Ditte Preis und Lieterzeiten errägen.
 Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
 Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ A - Offene Reali-Slim® Lager, Schrägkugellager

	KB SERIE												
		Abm	essungen iı	n mm			Tragzah	len in N ^①			3,968 mm Kugeln		
KAYDON Lager			٠.	٠	۳.	Rad	lial	Ax	ial	Gewicht in ka			
Layei	Bohrung	Außen-Ø	Ø Lı	Ø L2	Ø L₃	statisch ²	dyn.	statisch ²	dyn.	III NY			
KB020AR0	50,800	66,675	56,667	60,782	62,586	4.849	2.673	14.012	6.139	0,07			
KB025AR0	63,500	79,375	69,367	73,482	75,286	5.961	3.003	17.170	7.073	0,09			
KB030AR0	76,200	92,075	82,067	86,182	87,935	6.895	3.265	19.884	7.784	0,10			
KB035AR0	88,900	104,775	94,767	98,882	100,635	7.962	3.563	23.042	8.585	0,12	7 0075		
KB040AR0	101,600	117,475	107,467	111,582	113,284	9.074	3.848	26.200	9.341	0,14	7,9375 -		
KB042AR0	107,950	123,825	113,817	117,932	119,634	9.564	3.963	27.579	9.653	0,14	F		
*KB045AR0	114,300	130,175	120,167	124,282	125,984	10.008	4.079	28.913	9.964	0,15	7,937		
*KB047AR0	120,650	136,525	126,517	130,632	132,334	10.631	4.230	30.737	10.409	0,16			
*KB050AR0	127,000	142,875	132,867	136,982	138,684	11.121	4.341	32.072	10.720	0,17	L ₂ †		
KB055AR0	139,700	155,575	145,567	149,682	151,333	12.188	4.595	35.230	11.387	0,18			
KB060AR0	152,400	168,275	158,267	162,382	164,033	13.300	4.840	38.388	12.055	0,20	•		
*KB065AR0	165,100	180,975	170,967	175,082	176,733	14.234	5.035	41.102	12.633	0,21			
*KB070AR0	177,800	193,675	183,667	187,782	189,382	15.346	5.267	44.304	13.256	0,23			
*KB075AR0	190,500	206,375	196,367	200,482	202,057	16.458	5.494	47.463	13.878	0,24			
*KB080AR0	203,200	219,075	209,067	213,182	214,706	17.526	5.712	50.621	14.501	0,26			
KB090AR0	228,600	244,475	234,467	238,582	240,055	19.572	6.094	56.492	15.613	0,29			
*KB100AR0	254,000	269,875	259,867	263,982	265,405	21.752	6.499	62.809	16.725	0,32			
*KB110AR0	279,400	295,275	285,267	289,382	290,754	23.798	6.850	68.681	17.793	0,35			
*KB120AR0	304,800	320,675	310,667	314,782	316,103	25.978	7.219	74.997	18.860	0,39			
*KB140AR0	355,600	371,475	361,467	365,582	366,751	30.070	7.860	86.740	20.773	0,44			
*KB160AR0	406,400	422,275	412,267	416,382	417,398	34.296	8.483	98.973	22.686	0,51	③ F = 1,01		
*KB180AR0	457,200	473,075	463,067	467,182	467,995	38.522	9.065	111.161	24.510	0,57	Alle Kanten gefast		
*KB200AR0	508,000	523,875	513,867	517,982	518,566	42.747	9.617	123.349	26.244	0,63	2 : 15 12 32300		

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen

Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

	Kugeltaschenkäfig 4,763 mm Kugeln										
		Abm	essungen iı	n mm			Tragzahl	len in N ^①			,
KAYDON Lager	Dahmma	A O	<i>α</i> .	<i>α</i> .	<i>α</i> .	Rac	dial	Ах	ial	Gewicht in kg	
Lugoi	Bohrung	Außen-Ø	Ø Lı	Ø L2	Ø L₃	statisch ²	dyn.	statisch ²	dyn.	9	
KC040AR0	101,600	120,650	108,636	113,614	115,672	11.343	5.129	32.739	12.322	0,20	
*KC042AR0	107,950	127,000	114,986	119,964	122,022	12.055	5.311	34.785	12.811	0,21	
KC045AR0	114,300	133,350	121,336	126,314	128,321	12.722	5.489	36.787	13.300	0,22	
KC047AR0	120,650	139,700	127,686	132,664	134,671	13.434	5.667	38.789	13.790	0,23	9.525
KC050AR0	127,000	146,050	134,036	139,014	141,021	14.145	5.841	40.790	14.234	0,24	9,525 — F —
KC055AR0	139,700	158,750	146,736	151,714	153,721	15.302	6.112	44.126	14.991	0,26	
KC060AR0	152,400	171,450	159,436	164,414	166,370	16.681	6.441	48.130	15.925	0,29	1 9,525
*KC065AR0	165,100	184,150	172,136	177,114	179,070	18.060	6.757	52.133	16.770	0,31	
KC070AR0	177,800	196,850	184,836	189,814	191,770	19.216	7.006	55.469	17.482	0,34	L ₂ L ₃
*KC075AR0	190,500	209,550	197,536	202,514	204,419	20.595	7.304	59.517	18.327	0,35	L ₁
KC080AR0	203,200	222,250	210,236	215,214	217,119	22.019	7.598	63.521	19.127	0,38	
*KC090AR0	228,600	247,650	235,636	240,614	242,468	24.554	8.105	70.860	20.595	0,44	
*KC100AR0	254,000	273,050	261,036	266,014	267,818	27.312	8.638	78.867	22.108	0,47	
*KC110AR0	279,400	298,450	286,436	291,414	293,167	29.892	9.106	86.251	23.487	0,52	
*KC120AR0	304,800	323,850	311,836	316,814	318,516	32.428	9.550	93.591	24.777	0,56	
*KC140AR0	355,600	374,650	362,636	367,614	369,189	37.765	10.440	108.981	27.446	0,65	
*KC160AR0	406,400	425,450	413,436	418,414	419,837	43.059	11.267	124.328	29.937	0,74	
*KC180AR0	457,200	476,250	464,236	469,214	470,484	48.397	12.041	139.719	32.383	0,83	
*KC200AR0	508,000	527,050	515,036	520,014	521,132	53.512	12.735	154.442	34.607	0,92	@ F 101
*KC250AR0	635,000	654,050	642,036	647,014	647,700	66.279	14.381	192.519	40.079	1,14	$\Im F = 1,01$ Alle Kanten gefast
*KC300AR0	762,000	781,050	769,036	774,014	774,294	79.890	15.840	230.640	45.194	1,37	, and i tailitoin goldot

	KD SERIE												
		Abm	essungen ir	n mm			Tragzahl	len in N ^①			6,350 mm Kugeln		
KAYDON Lager			۳.	~ ·	. ۳.	Rac	dial	Ax	ial	Gewicht in kg			
Layer	Bohrung	Außen-Ø	Ø Lı	Ø L ₂	Ø L₃	statisch ²	dyn.	statisch ²	dyn.	III NY			
KD040AR0	101,600	127,000	110,998	117,602	120,421	15.791	8.091	45.639	18.949	0,36			
KD042AR0	107,950	133,350	117,348	123,952	126,771	16.681	8.345	48.174	19.661	0,38			
KD045AR0	114,300	139,700	123,698	130,302	133,121	17.571	8.590	50.710	20.328	0,40			
KD047AR0	120,650	146,050	130,048	136,652	139,446	18.460	8.834	53.245	20.996	0,42	1 1		
KD050AR0	127,000	152,400	136,398	143,002	145,796	19.305	9.074	55.781	21.663	0,44	— ► 12,7 ←		
KD055AR0	139,700	165,100	149,098	155,702	158,445	21.085	9.541	60.852	22.953	0,48			
KD060AR0	152,400	177,800	161,798	168,402	171,145	22.819	9.995	65.923	24.198	0,52	12,7		
KD065AR0	165,100	190,500	174,498	181,102	183,794	24.599	10.436	70.994	25.444	0,56			
KD070AR0	177,800	203,200	187,198	193,802	196,494	26.334	10.863	76.065	26.645	0,60	L ₂ L ₃		
KD075AR0	190,500	215,900	199,898	206,502	209,194	28.113	11.281	81.136	27.801	0,64	L1 , °		
KD080AR0	203,200	228,600	212,598	219,202	221,844	29.848	11.686	86.207	28.958	0,69			
KD090AR0	228,600	254,000	237,998	244,602	247,193	33.362	12.468	96.348	31.182	0,77			
*KD100AR0	254,000	279,400	263,398	270,002	272,593	36.876	13.220	106.490	33.362	0,85			
*KD110AR0	279,400	304,800	288,798	295,402	297,942	40.390	13.936	116.632	35.408	0,93			
KD120AR0	304,800	330,200	314,198	320,802	323,291	43.904	14.626	126.774	37.454	1,01			
*KD140AR0	355,600	381,000	364,998	371,602	373,990	50.932	15.934	147.058	41.324	1,17			
*KD160AR0	406,400	431,800	415,798	422,402	424,637	57.960	17.152	167.342	45.061	1,33			
*KD180AR0	457,200	482,600	466,598	473,202	475,285	64.989	18.296	187.626	48.619	1,49			
*KD200AR0	508,000	533,400	517,398	524,002	525,907	72.017	19.376	207.910	52.089	1,66			
*KD210AR0	533,400	558,800	542,798	549,402	551,180	75.535	19.892	218.052	53.761	1,74	@F 150		
*KD250AR0	635,000	660,400	644,398	651,002	652,475	89.587	21.832	258.620	60.229	2,06	③ F = 1,52 Alle Kanten gefast		
*KD300AR0	762,000	787,400	771,398	778,002	779,069	107.158	24.007	309.329	67.880	2,47			

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

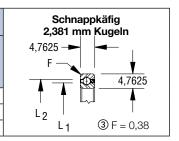
① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahl ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

	Kugeltaschenkäfig 9,525 mm Kugeln										
		Abm	essungen ir	n mm			Tragzahl	len in N ^①			.,
KAYDON Lager			~ ·	۳.	٠.	Rac	lial	Ах	ial	Gewicht in kg	
Lugoi	Bohrung	Außen-Ø	Ø L ₁	Ø L2	Ø L ₃	statisch ²	dyn.	statisch ²	dyn.	III Ng	
*KF040AR0	101,600	139,700	115,697	125,603	129,921	28.246	16.619	81.580	37.454	0,87	
*KF042AR0	107,950	146,050	122,047	131,953	136,271	29.358	16.926	84.739	38.388	0,93	
*KF045AR0	114,300	152,400	128,524	138,303	142,621	31.538	17.642	91.011	40.256	0,97	
KF047AR0	120,650	158,750	134,747	144,653	148,971	32.606	17.944	94.124	41.191	1,02	
*KF050AR0	127,000	165,100	141,097	151,003	155,321	33.673	18.242	97.283	42.080	1,07	19,05
KF055AR0	139,700	177,800	153,797	163,703	167,970	36.965	19.212	106.668	44.749	1,17	F ~
KF060AR0	152,400	190,500	166,497	176,403	180,670	40.212	20.150	116.099	47.374	1,23	
KF065AR0	165,100	203,200	179,197	189,103	193,370	43.459	21.058	125.529	49.909	1,33	19,05
*KF070AR0	177,800	215,900	191,897	201,803	206,070	46.751	21.939	134.915	52.356	1,43	
KF075AR0	190,500	228,600	204,597	214,503	218,694	48.930	22.472	141.187	53.957	1,54	
KF080AR0	203,200	241,300	217,297	227,203	231,394	52.178	23.318	150.617	56.359	1,64	L ₂ L ₃
KF090AR0	228,600	266,700	242,697	252,603	256,743	58.672	24.946	169.433	60.941	1,79	L1
KF100AR0	254,000	292,100	268,097	278,003	282,092	64.143	26.200	185.135	64.633	2,00	
*KF110AR0	279,400	317,500	293,497	303,403	307,492	70.638	27.699	203.951	68.947	2,15	v
KF120AR0	304,800	342,900	318,897	328,803	332,842	76.065	28.856	219.653	72.462	2,36	
*KF140AR0	355,600	393,700	369,697	379,603	383,591	88.030	31.329	254.171	79.846	2,61	
*KF160AR0	406,400	444,500	420,497	430,403	434,289	99.996	33.642	288.645	86.918	3,07	
*KF180AR0	457,200	495,300	471,297	481,203	485,038	113.029	36.044	326.321	94.347	3,48	
*KF200AR0	508,000	546,100	522,097	532,003	535,737	124.995	38.086	360.840	100.886	3,84	
*KF250AR0	635,000	673,100	649,097	659,003	662,559	154.353	42.636	445.712	116.099	4,76	
*KF300AR0	762,000	800,100	776,097	786,003	789,305	184.779	46.853	533.342	130.911	5,67	③ F = 2,03
*KF350AR0	889,000	927,100	903,097	913,003	916,026	215.205	50.630	621.416	144.923	6,62	Alle Kanten gefast
*KF400AR0	1016,000	1054,100	1030,097	1040,003	1042,772	245.631	54.033	709.046	158.268	7,53	J r tour tour goldet

	Kugeltaschenkäfig 12,700 mm Kugeln										
		Abm	essungen in	mm			Tragzahl	len in N ^①			,
KAYDON Lager			۵.	<i>~</i> .	۵.	Rac	lial	Ax	ial	Gewicht in kg	
Lagoi	Bohrung	Außen-Ø	Ø L ₁	Ø L ₂	Ø L₃	statisch ²	dyn.	statisch ²	dyn.	III KY	
*KG040AR0	101,600	152,400	120,447	133,553	139,471	42.169	27.939	121.703	60.629	1,64	
*KG042AR0	107,950	158,750	126,797	139,903	145,821	44.260	28.638	127.797	62.675	1,74	
*KG045AR0	114,300	165,100	133,147	146,253	152,121	46.395	29.189	133.891	64.633	1,79	
*KG047AR0	120,650	171,450	139,497	152,603	158,471	48.486	30.003	139.941	66.590	1,89	
*KG050AR0	127,000	177,800	145,847	158,953	164,821	50.576	30.679	146.035	68.503	2,00	25,4
*KG055AR0	139,700	190,500	158,547	171,653	177,521	54.802	31.992	158.223	72.239	2,15	F-\
KG060AR0	152,400	203,200	171,247	184,353	190,221	59.028	33.273	170.367	75.887	2,30	
*KG065AR0	165,100	215,900	183,947	197,053	202,870	63.254	34.523	182.555	79.490	2,45	
*KG070AR0	177,800	228,600	196,647	209,753	215,570	67.435	35.741	194.743	82.959	2,66	25,4
KG075AR0	190,500	241,300	209,347	222,453	228,270	71.661	36.934	206.887	86.384	2,81	
KG080AR0	203,200	254,000	222,047	235,153	240,919	75.887	38.104	219.075	89.765	2,97	L ₂
KG090AR0	228,600	279,400	247,447	260,553	266,319	84.338	40.359	243.407	96.260	3,27	L ₁
KG100AR0	254,000	304,800	272,847	285,953	291,668	92.745	42.529	267.738	102.576	3,63	
*KG110AR0	279,400	330,200	298,247	311,353	317,017	101.197	44.602	292.070	108.715	3,94	
KG120AR0	304,800	355,600	323,647	336,753	342,417	109.604	46.622	316.446	114.675	4,29	
KG140AR0	355,600	406,400	374,447	387,553	393,141	126.463	50.434	365.110	126.152	4,94	
KG160AR0	406,400	457,200	425,247	438,353	443,840	143.322	54.010	413.773	137.139	5,62	
KG180AR0	457,200	508,000	476,047	489,153	494,589		57.373	462.615	147.681	6,26	
KG200AR0	508,000	558,800	526,847	539,953	545,287	177.084	60.549	511.101	157.867	6,89	
*KG220AR0	558,800	609,600	577,647	590,753	596,087	193.934	63.565	559.835	167.751	7,54	
*KG250AR0	635,000	685,800	653,847	666,953	672,109		67.786	632.982	182.021	8,53	
*KG300AR0	762,000	812,800	780,847	793,953	798,855		74.227	754.418	204.707	10,20	③ F = 2,03
KG350AR0	889,000	939,800	907,847	920,953	1	303.547	79.988	876.299	226.148	11,88	Alle Kanten gefast
*KG400AR0	1016,000	1066,800	1027,989	1047,953	1052,322	345.716	85.197	998.181	246.609	13,51	


^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
② Bei den angegebenen statischen Tragzahl avon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Offene REALI-SLIM® Lagerauswahl Typ C Radialkugellager

Ein im "Conrad-Verfahren" montiertes Lager, vorrangig entwickelt zur Aufnahme radialer Belastungen – Tiefe Laufbahnen erlauben auch Axialkräfte in beiden Richtungen - wird oft eingesetzt in Verbindung mit weiteren Lagern.

KAA SERIE												
Abmessungen in mm Radiale Tragzahlen in N [©]												
KAYDON Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	statisch ²	dyn.	Gewicht in kg					
KAA10CL0	25,400	34,925	28,956	31,369	1.290	836	0,01					
KAA15CL0	38,100	47,625	41,656	44,069	1.779	1.001	0,02					
KAA17CL0	44,450	53,975	48,006	50,419	2.046	1.077	0,02					

		Schnappkäfig 3,175 mm Kugeln						
KAVDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Causiahd	
KAYDON Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L2	Ø L ₃	dyn.	Gewicht in kg	
KA020CP0	50,800	63,500	55,524	58,776	3.025	1.748	0,05	
KA025CP0	63,500	76,200	68,224	71,476	3.692	1.966	0,06	
KA030CP0	76,200	88,900	80,924	84,176	4.404	2.166	0,07	1 1
KA035CP0	88,900	101,600	93,624	96,876	5.071	2.358	0,08	6,35 —
KA040CP0	101,600	114,300	106,324	109,576	5.738	2.540	0,09	F ~
KA042CP0	107,950	120,650	112,674	115,926	6.094	2.629	0,09	6,35
KA045CP0	114,300	127,000	119,024	122,276	6.405	2.713	0,10	↑ ↑ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
KA047CP0	120,650	133,350	125,374	128,626	6.761	2.798	0,10	
KA050CP0	127,000	139,700	131,724	134,976	7.073	2.882	0,11	
KA055CP0	139,700	152,400	144,424	147,676	7.784	3.047	0,11	
KA060CP0	152,400	165,100	157,124	160,376	8.452	3.203	0,13	
KA065CP0	165,100	177,800	169,824	173,076	9.119	3.354	0,14	
KA070CP0	177,800	190,500	182,524	185,776	9.786	3.501	0,14	
KA075CP0	190,500	203,200	195,224	198,476	10.453	3.648	0,15	
KA080CP0	203,200	215,900	207,924	211,176	11.121	3.785	0,17	
KA090CP0	228,600	241,300	233,324	236,576	12.500	4.057	0,20	
KA100CP0	254,000	266,700	258,724	261,976	13.834	4.310	0,23	© 5 . 0.4
KA110CP0	279,400	292,100	284,124	287,376	15.168	4.559	0,24	$\Im F = 0,64$ Alle Kanten gefast
KA120CP0	304,800	317,500	309,524	312,776	16.547	4.795	0,25	Allo Railleit gelast

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte

Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das urmschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ C - Offene REALI-SLIM® Lagerauswahl, Radialkugellager

		Schnappkäfig 3,968 mm Kugeln						
KAVDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Causialut	
KAYDON Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L2	statisch [®]	dyn.	Gewicht in kg	
KB020CP0	50,800	66,675	56,667	60,782	4.137	2.567	0,07	
KB025CP0	63,500	79,375	69,367	73,482	5.071	2.865	0,09	
KB030CP0	76,200	92,075	82,067	86,182	5.961	3.145	0,11	
KB035CP0	88,900	104,775	94,767	98,882	6.850	3.412	0,12	
KB040CP0	101,600	117,475	107,467	111,582	7.784	3.670	0,14	
KB042CP0	107,950	123,825	113,817	117,932	8.140	3.763	0,14	7,9375
KB045CP0	114,300	130,175	120,167	124,282	8.674	3.914	0,15	7,9575
*KB047CP0	120,650	136,525	126,517	130,632	9.030	4.008	0,15	F —
KB050CP0	127,000	142,875	132,867	136,982	9.564	4.150	0,17	7,9375
*KB055CP0	139,700	155,575	145,567	149,682	10.498	4.377	0,19	
KB060CP0	152,400	168,275	158,267	162,382	11.387	4.600	0,20	L ₂ T
KB065CP0	165,100	180,975	170,967	175,082	12.277	4.813	0,21	
*KB070CP0	177,800	193,675	183,667	187,782	13.211	5.022	0,23	'
*KB075CP0	190,500	206,375	196,367	200,482	14.101	5.227	0,24	
KB080CP0	203,200	219,075	209,067	213,182	14.991	5.422	0,26	
*KB090CP0	228,600	244,475	234,467	238,582	16.814	5.801	0,30	
*KB100CP0	254,000	269,875	259,867	263,982	18.638	6.165	0,33	
*KB110CP0	279,400	295,275	285,267	289,382	20.417	6.512	0,34	
*KB120CP0	304,800	320,675	310,667	314,782	22.241	6.846	0,38	
*KB140CP0	355,600	371,475	361,467	365,582	25.844	7.473	0,48	
*KB160CP0	406,400	422,275	412,267	416,382	29.447	8.060	0,54	05.404
*KB180CP0	457,200	473,075	463,067	467,182	33.095	8.612	0,61	③ F = 1,01 Alle Kanten gefast
*KB200CP0	508,000	523,875	513,867	517,982	36.698	9.132	0,68	, and i caritori goldet

 ^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.
 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 ③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ C - Offene REALI-SLIM® Lagerauswahl, Radialkugellager

	KC SERIE												
KAYDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Gewicht	4,763 mm Kug					
Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L2	statisch ²	dyn.	in kg						
KC040CP0	101,600	120,650	108,636	113,614	9.341	4.773	0,20						
KC042CP0	107,950	127,000	114,986	119,964	9.875	4.929	0,21						
KC045CP0	114,300	133,350	121,336	126,314	10.409	5.084	0,22						
KC047CP0	120,650	139,700	127,686	132,664	10.943	5.231	0,23						
KC050CP0	127,000	146,050	134,036	139,014	11.521	5.378	0,26	9.525					
KC055CP0	139,700	158,750	146,736	151,714	12.589	5.667	0,27	9,525					
KC060CP0	152,400	171,450	159,436	164,414	13.656	5.947	0,29	F —					
KC065CP0	165,100	184,150	172,136	177,114	14.724	6.214	0,31						
KC070CP0	177,800	196,850	184,836	189,814	15.791	6.481	0,33						
KC075CP0	190,500	209,550	197,536	202,514	16.859	6.735	0,35						
KC080CP0	203,200	222,250	210,236	215,214	17.926	6.984	0,38	L ₂					
KC090CP0	228,600	247,650	235,636	240,614	20.062	7.464	0,43	L ₁					
KC100CP0	254,000	273,050	261,036	266,014	22.197	7.922	0,48						
KC110CP0	279,400	298,450	286,436	291,414	24.332	8.358	0,53						
KC120CP0	304,800	323,850	311,836	316,814	26.467	8.781	0,57						
KC140CP0	355,600	374,650	362,636	367,614	30.737	9.582	0,69						
KC160CP0	406,400	425,450	413,436	418,414	35.052	10.324	0,78						
KC180CP0	457,200	476,250	464,236	469,214	39.322	11.023	0,88						
*KC200CP0	508,000	527,050	515,036	520,014	43.593	11.681	0,98	@F 100					
*KC250CP0	635,000	654,050	642,036	647,014	54.268	13.176	1,22	③ F = 1,02 Alle Kanten gefa					
*KC300CP0	762,000	781,050	769,036	774,014	64.989	14.501	1,46	,s ranton gold					

		Schnappkäfig 6,350 mm Kugeln						
KAYDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Couricht	.,
Lager	Bohrung	Außen-Ø	Ø L1	Ø L2	statisch ²	dyn.	Gewicht in kg	
KD040CP0	101,600	127,000	110,998	117,602	13.701	7.807	0,35	
KD042CP0	107,950	133,350	117,348	123,952	14.190	7.949	0,38	
KD045CP0	114,300	139,700	123,698	130,302	15.213	8.278	0,40	
KD047CP0	120,650	146,050	130,048	136,652	15.702	8.416	0,43	
KD050CP0	127,000	152,400	136,398	143,002	16.725	8.736	0,45	12,7
KD055CP0	139,700	165,100	149,098	155,702	18.238	9.177	0,48	F _ 12,7
KD060CP0	152,400	177,800	161,798	168,402	19.795	9.608	0,53	
KD065CP0	165,100	190,500	174,498	181,102	21.307	10.026	0,55	12,7
KD070CP0	177,800	203,200	187,198	193,802	22.819	10.431	0,59	TA V
KD075CP0	190,500	215,900	199,898	206,502	24.332	10.827	0,64	
KD080CP0	203,200	228,600	212,598	219,202	25.844	11.210	0,69	L ₂
KD090CP0	228,600	254,000	237,998	244,602	28.913	11.957	0,78	
KD100CP0	254,000	279,400	263,398	270,002	31.938	12.664	0,85	, v
KD110CP0	279,400	304,800	288,798	295,402	35.008	13.345	0,93	
KD120CP0	304,800	330,200	314,198	320,802	38.032	14.003	1,02	
*KD140CP0	355,600	381,000	364,998	371,602	44.126	15.244	1,24	
*KD160CP0	406,400	431,800	415,798	422,402	50.220	16.405	1,41	
*KD180CP0	457,200	482,600	466,598	473,202	56.270	17.495	1,58	
*KD200CP0	508,000	533,400	517,398	524,002	62.364	18.522	1,75	
*KD210CP0	533,400	558,800	542,798	549,402	65.416	19.012	1,83	@ F 4 F0
*KD250CP0	635,000	660,400	644,398	651,002	77.577	20.858	2,17	$\Im F = 1,52$ Alle Kanten gefast
*KD300CP0	762,000	787,400	771,398	771,144	92.790	22.922	2,60	, wo it can corr goldot

 ^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.
 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
 ② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 ③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

	Schnappkäfig 9,525 mm Kugeln							
KAYDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Gewicht	5,025 mm (agom
Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L ₂	statisch [®]	dyn.	in kg	
KF040CP0	101,600	139,700	115,697	125,603	23.843	15.831	0,86	
KF042CP0	107,950	146,050	122,047	131,953	25.088	16.258	0,91	
*KF045CP0	114,300	152,400	128,397	138,303	26.378	16.681	0,95	19,05
KF047CP0	120,650	158,750	134,747	144,653	27.623	17.095	1,00	F ~
KF050CP0	127,000	165,100	141,097	151,003	28.869	17.508	1,04	
KF055CP0	139,700	177,800	153,797	163,703	31.360	18.309	1,13	
KF060CP0	152,400	190,500	166,497	176,403	33.895	19.087	1,22	19,05
KF065CP0	165,100	203,200	179,197	189,103	36.386	19.844	1,32	
*KF070CP0	177,800	215,900	191,897	201,803	38.922	20.586	1,45	
KF075CP0	190,500	228,600	204,597	214,503	41.413	21.311	1,54	L ₂
KF080CP0	203,200	241,300	217,297	227,203	43.948	22.014	1,59	L1
KF090CP0	228,600	266,700	242,697	252,603	48.930	23.380	1,77	
KF100CP0	254,000	292,100	268,097	278,003	53.957	24.688	1,95	
KF110CP0	279,400	317,500	293,497	303,403	58.983	25.947	2,18	
KF120CP0	304,800	342,900	318,897	328,803	64.010	27.156	2,36	
*KF140CP0	355,600	393,700	369,697	379,603	74.063	29.447	2,72	
*KF160CP0	406,400	444,500	420,497	430,403	84.071	31.600	3,22	
*KF180CP0	457,200	495,300	471,297	481,203	94.124	33.615	3,58	
*KF200CP0	508,000	546,100	522,097	532,003	104.177	35.524	4,04	
*KF250CP0	635,000	673,100	649,097	659,003	129.265	39.869	4,94	③ F = 2.03
*KF300CP0	762,000	800,100	776,097	786,003	154.353	43.717	5,90	Alle Kanten gefast
*KF350CP0	889,000	927,100	903,097	913,003	179.486	47.165	6,85	
*KF400CP0	1.016,000	1.054,100	1.030,097	1.040,003	204.574	50.274	7,80	

		Schnappkäfig 12,700 mm Kugeln						
KANDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Causiaht	
KAYDON Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	statisch ²	dyn.	Gewicht in kg	
*KG040CP0	101,600	152,400	120,447	133,553	36.520	27.201	1,63	
*KG042CP0	107,950	158,750	126,797	139,903	36.520	26.961	1,72	
*KG045CP0	114,300	165,100	133,147	146,253	38.966	27.922	1,81	
*KG047CP0	120,650	171,450	139,497	152,603	41.368	28.856	1,86	← 25,4 ←
KG050CP0	127,000	177,800	145,847	158,953	43.815	29.763	1,95	
*KG055CP0	139,700	190,500	158,547	171,653	46.262	30.470	2,13	
*KG060CP0	152,400	203,200	171,247	184,353	51.110	32.210	2,31	
KG065CP0	165,100	215,900	183,947	197,053	53.557	32.886	2,45	
*KG070CP0	177,800	228,600	196,647	209,753	58.405	34.536	2,63	
KG075CP0	190,500	241,300	209,347	222,453	60.852	35.190	2,77	25,4
KG080CP0	203,200	254,000	222,047	235,153	65.700	36.765	2,95	
KG090CP0	228,600	279,400	247,447	260,553	73.040	38.891	3,27	
KG100CP0	254,000	304,800	272,847	285,953	80.335	40.941	3,58	L ₂
KG110CP0	279,400	330,200	298,247	311,353	87.630	42.916	3,90	L ₁
KG120CP0	304,800	355,600	323,647	336,753	94.925	44.811	4,22	'
KG140CP0	355,600	406,400	374,447	387,553	109.515	48.423	4,90	
KG160CP0	406,400	457,200	425,247	438,353	124.150	51.813	5,58	
KG180CP0	457,200	508,000	476,047	489,153	138.740	55.011	6,21	Ť
KG200CP0	508,000	558,800	526,847	539,953	153.330	58.023	7,17	
*KG220CP0	558,800	609,600	577,647	590,753	167.951	60.874	7,62	
*KG250CP0	635,000	685,800	653,847	666,953	189.850	64.904	8,84	
*KG300CP0	762,000	812,800	780,847	793,953	226.370	71.007	10,57	③ F = 2,03
*KG350CP0	889,000	939,800	907,847	920,953	262.890	76.487	12,29	Alle Kanten gefast
*KG400CP0	1016,000	1066,800	1034,847	1047,953	299.410	81.434	13,97	

 ^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.
 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
 ② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 ③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Offene REALI-SLIM® Lagerauswahl Typ X Vierpunktlager

Ein im "Conrad-Verfahren" montiertes Lager, entwickelt für Anwendungen mit unterschiedlichen Belastungen. Die einzigartige interne Geometrie erlaubt die Aufnahme radialer Lasten, axialer Lasten in beide Richtungen sowie Momentenlasten einzeln oder in jeder Kombination. Ein einzelnes Vierpunktlager kann in vielen Anwendungen zwei Lager ersetzen.

				KAA	SEF	RIE						Schnappkäfig 2,381 mm Kugeln
		Abmessun	gen in mm)			Tragza	hlen ^①				4,7625 -
KAYDON Lager	Dahman	AOan Ø	Ø.	Ø.	Radia	al (N)	Axia	ıl (N)	Momer	ıt (Nm)	Gewicht in ka	F — •
Lugoi	Bonrung	Außen-Ø	Ø L ₁	Ø L2	stat. ²	dyn.	stat. ²	dyn.	stat. ^②	dyn.	9	4,7625
KAA10XL0	25,400	34,925	28,956	31,369	1.290	1.099	3.247	1.646	19	12	0,01	
KAA15XL0	38,100	47,625	41,656	44,069	1.779	1.317	4.448	2.046	38	21	0,02	L ₂
KAA17XL0	44,450	53,975	48,006	50,419	2.046	1.419	5.071	2.224	50	26	0,02	L ₁ ③ F = 0,38

	KA SERIE													
		Abmessun	gen in mm	1			Tragza	hlen ^①				3,175 mm Kugeln		
KAYDON Lager	Dahmuna	AOan Ø	Ø.	Ø.	Radia	al (N)	Axia	I (N)	Momen	nt (Nm)	Gewicht in ka			
go.	Boiling	Außen-Ø	Ø L ₁	Ø L ₂	stat.2	dyn.	stat.2	dyn.	stat.2	dyn.				
KA020XP0	50,800	63,500	55,524	58,776	3.025	2.286	7.607	3.514	87	49	0,05			
KA025XP0	63,500	76,200	68,224	71,476	3.692	2.593	9.297	4.048	130	68	0,06			
KA030XP0	76,200	88,900	80,924	84,176	4.404	2.860	10.987	4.493	181	89	0,07			
KA035XP0	88,900	101,600	93,624	96,876	5.071	3.118	12.677	4.938	241	111	0,08	1 1		
KA040XP0	101,600	114,300	106,324	109,576	5.738	3.363	14.323	5.382	310	136	0,09	6,35 —		
KA042XP0	107,950	120,650	112,674	115,926	6.094	3.483	15.168	5.605	347	149	0,09	F		
KA045XP0	114,300	127,000	119,024	122,276	6.405	3.599	16.014	5.827	386	163	0,10	6,		
KA047XP0	120,650	133,350	125,374	128,626	6.761	3.710	16.859	6.005	428	177	0,10			
KA050XP0	127,000	139,700	131,724	134,976	7.073	3.821	17.704	6.228	472	191	0,11			
KA055XP0	139,700	152,400	144,424	147,676	7.784	4.039	19.394	6.583	567	221	0,11	L ₁		
KA060XP0	152,400	165,100	157,124	160,376	8.452	4.248	21.085	6.984	670	253	0,13			
KA065XP0	165,100	177,800	169,824	173,076	9.119	4.453	22.775	7.340	781	286	0,14			
KA070XP0	177,800	190,500	182,524	185,776	9.786	4.653	24.465	7.695	902	321	0,14			
KA075XP0	190,500	203,200	195,224	198,476	10.453	4.844	26.156	8.051	1.030	358	0,15			
KA080XP0		215,900				5.031	27.846	8.407	1.167	395	0,17			
KA090XP0	228,600	241,300	233,324	236,576	12.500	5.391	31.227	9.074	1.468	475	0,20			
KA100XP0	254,000	266,700	258,724	261,976	13.834	5.734	34.607	9.697	1.801	560	0,23	③ F = 0.64		
KA110XP0	279,400	292,100	284,124	287,376	15.168	6.059	37.988	10.320	2.170	650	0,24	Alle Kanten gefast		
KA120XP0	304,800	317,500	309,524	312,776	16.547	6.374	41.368	10.898	2.573	744	0,25	2 2		

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte

Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ X - Offene REALI-SLIM® Lagerauswahl, Vierpunktlager

				KB	SER	RIE						Schnappkäfig 3,968 mm Kugeln
		Abmessun	gen in mm	1			Tragza	ahlen ^①				o,ooo miii ragoiii
KAYDON Lager			<i></i> .	<i>~</i> .	Radia	al (N)	Axia	ıl (N)	Momei	nt (Nm)	Gewicht in kg	
Lagoi	Bonrung	Außen-Ø	Ø Lı	Ø L2	stat. ^②	dyn.	stat. ^②	dyn.	stat. ²	dyn.	. III NG	
KB020XP0	50,800	66,675	56,667	60,782	4.137	3.372	10.409	5.027	122	74	0,07	
KB025XP0	63,500	79,375	69,367	73,482	5.071	3.772	12.633	5.738	181	101	0,09	
KB030XP0	76,200	92,075	82,067	86,182	5.961	4.150	14.902	6.405	251	131	0,11	
KB035XP0	88,900	104,775	94,767	98,882	6.850	4.511	17.170	7.073	332	164	0,12	
KB040XP0	101,600	117,475	107,467	111,582	7.784	4.853	19.439	7.651	426	199	0,14	
KB042XP0	107,950	123,825	113,817	117,932	8.140	4.982	20.328	7.918	471	217	0,14	7,9375 -
KB045XP0	114,300	130,175	120,167	124,282	8.674	5.182	21.707	8.229	530	238	0,15	·
*KB047XP0	120,650	136,525	126,517	130,632	9.030	5.307	22.597	8.452	581	256	0,15	F -
KB050XP0	127,000	142,875	132,867	136,982	9.564	5.498	23.931	8.808	646	278	0,17	7,9375
KB055XP0	139,700	155,575	145,567	149,682	10.498	5.801	26.200	9.341	774	321	0,19	T • 1
KB060XP0	152,400	168,275	158,267	162,382	11.387	6.099	28.469	9.875	913	367	0,20	L ₂
KB065XP0	165,100	180,975	170,967	175,082	12.277	6.383	30.737	10.409	1.063	414	0,21	L ₁ "~"
*KB070XP0	177,800	193,675	183,667	187,782	13.211	6.663	33.006	10.898	1.226	464	0,23	
*KB075XP0	190,500	206,375	196,367	200,482	14.101	6.935	35.230	11.387	1.399	516	0,24	
KB080XP0	203,200	219,075	209,067	213,182	14.991	7.197	37.499	11.877	1.584	570	0,26	
KB090XP0	228,600	244,475	234,467	238,582	16.814	7.704	42.036	12.811	1.988	684	0,30	
*KB100XP0	254,000	269,875	259,867	263,982	18.638	8.189	46.528	13.701	2.438	805	0,33	
*KB110XP0	279,400	· '	· '	289,382			51.066		2.934	933	0,34	
*KB120XP0	304,800	320,675	310,667	314,782	22.241		55.603		3.476	1.067	0,38	
*KB140XP0	355,600			365,582			64.633	17.081	4.698	1.355	0,48	
KB160XP0	406,400	1 '	· '	416,382		10.720	73.663	18.638	6.103	1.667	0,54	③ F = 1.01
*KB180XP0	457,200			467,182					7.693	1.999	0,61	Alle Kanten gefast
*KB200XP0	508,000	523,875	513,867	517,982	36.698	12.148	91.722	21.574	9.466	2.352	0,68	

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
② Bei den angegebenen statischen Tragzahl und von ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ X - Offene REALI-SLIM® Lagerauswahl, Vierpunktlager

				KC	SEF	RIE						Schnappkäfig 4,763 mm Kugeln
		Abmessun	gen in mm	l			Tragzah	llen ^①				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
KAYDON Lager	Dahmuna	A O	<i>α</i> .	<i>a</i> .	Radi	al (N)	Axia	I (N)	Momer	nt (Nm)	Gewicht in kg	
Lugoi	Bonrung	Außen-Ø	Ø Lı	Ø L2	stat. ²	dyn.	stat. ²	dyn.	stat. ^②	dyn.		
KC040XP0	101,600	120,650	108,636	113,614	9.341	6.303	23.398	9.831	520	263	0,20	
*KC042XP0	107,950	127,000	114,986	119,964	9.875	6.512	24.732	10.186	581	287	0,21	
KC045XP0	114,300	133,350	121,336	126,314	10.409	6.717	26.067	10.587	645	312	0,22	i i
KC047XP0	120,650	139,700	127,686	132,664	10.943	6.921	27.401	10.943	714	338	0,23	9,525 -
KC050XP0	127,000	146,050	134,036	139,014	11.521	7.117	28.736	11.299	785	365	0,26	F —
KC055XP0	139,700	158,750	146,736	151,714	12.589	7.504	31.404	11.966	938	420	0,27	
KC060XP0	152,400	171,450	159,436	164,414	13.656	7.873	34.073	12.633	1.104	478	0,29	9,525
KC065XP0	165,100	184,150	172,136	177,114	14.724	8.234	36.787	13.300	1.285	540	0,31	
KC070XP0	177,800	196,850	184,836	189,814	15.791	8.590	39.456	13.923	1.478	603	0,33	L ₂
*KC075XP0	190,500	209,550	197,536	202,514	16.859	8.928	42.125	14.546	1.685	670	0,35	L ₁
KC080XP0	203,200	222,250	210,236	215,214	17.926	9.261	44.794	15.168	1.906	739	0,38	ı
KC090XP0	228,600	247,650	235,636	240,614	20.062	9.902	50.131	16.325	2.387	885	0,43	
KC100XP0	254,000	273,050	261,036	266,014	22.197	10.516	55.469	17.482	2.924	1.040	0,48	
KC110XP0	279,400	298,450	286,436	291,414	24.332	11.103	60.852	18.594	3.515	1.203	0,53	
KC120XP0	304,800	323,850	311,836	316,814	26.467	11.663	66.190	19.661	4.161	1.375	0,57	
KC140XP0	355,600	374,650	362,636	367,614	30.737	12.731	76.865	21.752	5.614	1.744	0,69	
KC160XP0	406,400	425,450	413,436	418,414	35.052	13.727	87.586	23.709	7.285	2.142	0,78	
*KC180XP0	457,200	476,250	464,236	469,214	39.322	14.657	98.261	25.622	9.173	2.566	0,88	
*KC200XP0	508,000	527,050	515,036	520,014	43.593	15.533	108.981	27.446	11.279	3.016	0,98	⊚ ⊏ 4.00
*KC250XP0	635,000	654,050	642,036	647,014	54.268	17.530	135.715	31.760	17.489	4.239	1,22	③ F = 1,02 Alle Kanten gefast
*KC300XP0	762,000	781,050	769,036	774,014	64.989	19.296	162.449	35.808	25.070	5.585	1,46	7 the Partiert gelast

				KD	SEF	RIE						Schnappkäfig 6,350 mm Kugeln
		Abmessun	gen in mm				Tragzah	len ^①				3,111
KAYDON Lager			<i>~</i> .	~.	Radia	al (N)	Axia	I (N)	Momer	ıt (Nm)	Gewicht in kg	
Lugui	Bohrung	Außen-Ø	Ø L ₁	Ø L2	stat. ²	dyn.	stat. ^②	dyn.	stat.®	dyn.	Ng	
KD040XP0	101,600	127,000	110,998	117,602	13.701	10.280	34.251	15.658	783	441	0,35	
KD042XP0	107,950	133,350	117,348	123,952	14.190	10.476	35.497	16.014	856	474	0,38	
KD045XP0	114,300	139,700	123,698	130,302	15.213	10.916	38.032	16.770	966	520	0,40	
KD047XP0	120,650	146,050	130,048	136,652	15.702	11.103	39.322	17.170	1.049	555	0,43	
KD050XP0	127,000	152,400	136,398	143,002	16.725	11.530	41.858	17.882	1.169	604	0,45	→ 12,7 ←
KD055XP0	139,700	165,100	149,098	155,702	18.238	12.121	45.639	18.949	1.391	693	0,48	F —
KD060XP0	152,400	177,800	161,798	168,402	19.795	12.700	49.464	19.973	1.633	787	0,53	
KD065XP0	165,100	190,500	174,498	181,102	21.307	13.256	53.245	20.996	1.894	884	0,55	12,7
KD070XP0	177,800	203,200	187,198	193,802	22.819	13.803	57.071	21.974	2.174	986	0,59	
KD075XP0	190,500	215,900	199,898	206,502	24.332	14.332	60.852	22.953	2.473	1.092	0,64	L ₂
KD080XP0	203,200	228,600	212,598	219,202	25.844	14.848	64.677	23.887	2.792	1.202	0,69	
KD090XP0	228,600	254,000	237,998	244,602	28.913	15.840	72.284	25.755	3.488	1.434	0,78	-1 [[]
KD100XP0	254,000	279,400	263,398	270,002	31.938	16.797	79.890	27.535	4.261	1.680	0,85	
KD110XP0	279,400	304,800	288,798	295,402	35.008	17.708	87.497	29.225	5.110	1.940	0,93	
KD120XP0	304,800	330,200	314,198	320,802	38.032	18.585	95.103	30.915	6.038	2.213	1,02	
KD140XP0	355,600	381,000	364,998	371,602	44.126	20.244	110.316	34.118	8.124	2.797	1,24	
*KD160XP0	406,400	431,800	415,798	422,402	50.220	21.792	125.529	37.187	10.520	3.426	1,41	
KD180XP0	457,200	482,600	466,598	473,202	56.270	23.246	140.742	40.167	13.219	4.098	1,58	
KD200XP0	508,000	533,400	517,398	524,002	62.364	24.616	155.955	43.014	16.235	4.809	1,75	③ F = 1.52
*KD210XP0	533,400	558,800	542,798	549,402	65.433	25.275	163.561	44.393	17.862	5.177	1,83	Alle Kanten gefast
*KD250XP0	635,000	660,400	644,398	651,002	77.577	27.735	193.987	49.731	25.127	6.739	2,17	-
*KD300XP0	762,000	787,400	771,398	778,002	92.790	30.497	232.019	56.048	35.939	8.863	2,60	

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahl ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

				KF	SEF	RIE						Schnappkäfig 9,525 mm Kugeln
		Abmessun	gen in mm				Tragza	hlen ^①				3,
KAYDON Lager		~	۳.	٠.	Radia	al (N)	Axia	ıl (N)	Momen	rt (Nm)	Gewicht in kg	
Lagoi	Bonrung	Außen-Ø	Ø Lı	Ø L2	stat. ²	dyn.	stat. ²	dyn.	stat. ^②	dyn.	, III NG	
KF040XP0	101,600	139,700	115,697	125,603	23.842	20.751	59.606	30.381	1.438	939	0,86	
KF042XP0	107,950	146,050	122,047	131,953	25.088	21.329	62.764	31.449	1.594	1.016	0,91	
KF045XP0	114,300	152,400	128,397	138,303	26.378	21.899	65.878	32.472	1.757	1.095	0,95	
KF047XP0	120,650	158,750	134,747	144,653	27.623	22.455	69.036	33.495	1.929	1.177	1,00	19,05
KF050XP0	127,000	165,100	141,097	151,003	28.869	23.006	72.150	34.518	2.108	1.261	1,04	19,05
KF055XP0	139,700	177,800	153,797	163,703	31.360	24.087	78.422	36.475	2.490	1.434	1,13	
KF060XP0	152,400	190,500	166,497	176,403	33.895	25.137	84.739	38.388	2.905	1.617	1,22	
KF065XP0	165,100	203,200	179,197	189,103	36.386	26.156	91.011	40.256	3.351	1.807	1,32	10.05
KF070XP0	177,800	215,900	191,897	201,803	38.922	27.148	97.283	42.080	3.829	2.005	1,45	19,05
KF075XP0	190,500	228,600	204,597	214,503	41.413	28.126	103.555	43.904	4.340	2.211	1,54	
KF080XP0	203,200	241,300	217,297	227,203	43.948	29.069	109.827	45.639	4.881	2.424	1,59	
KF090XP0	228,600	266,700	242,697	252,603	48.930	30.902	122.371	49.064	6.060	2.871	1,77	
KF100XP0	254,000	292,100	268,097	278,003	53.957	32.659	134.915	52.356	7.367	3.345	1,95	L1
KF110XP0	279,400	317,500	293,497	303,403	58.983	34.345	147.459	55.558	8.802	3.845	2,18	
KF120XP0	304,800	342,900	318,897	328,803	64.010	35.959	160.003	58.672	10.364	4.369	2,36	
KF140XP0	355,600	393,700	369,697	379,603	74.063	39.033	185.135	64.633	13.874	5.486	2,72	
*KF160XP0	406,400	444,500	420,497	430,403	84.071	41.907	210.223	70.371	17.885	6.688	3,22	
*KF180XP0	457,200	495,300	471,297	481,203	94.124	44.607	235.311	75.887	22.415	7.969	3,58	
*KF200XP0	508,000	546,100	522,097	532,003	104.177	47.160	260.443		27.454	9.324	4,04	
*KF250XP0	· ·	673,100	649,097	659,003			323.163		42.277	12.997	4,94	
*KF300XP0	, ,	800,100	776,097	786,003			385.928		60.286	_	5,90	③ F = 2,03
*KF350XP0	889,000	927,100	903,097	913,003	179.485	62.720	448.825	116.632	81.481	21.365	6,85	Alle Kanten gefast
*KF400XP0	1016,000	1054,100	1030,097	1040,003	204.573	66.875	511.545	127.308	105.874	25.966	7,80	

				KG	SEF	RIE						1	Schnappkäfig 2,700 mm Kug	
		Abmessun	gen in mm				Tragza	hlen ^①					,	
KAYDON Lager			-u .	-u .	Radia	al (N)	Axia	l (N)	Momen	t (Nm)	Gewicht in kg			
Layei	Bohrung	Außen-Ø	Ø Lı	Ø L ₂	stat. ^②	dyn.	stat. ²	dyn.	stat. ²	dyn.	III NY			
*KG040XP0	101,600	152,400	120,447	133,553	36.520	35.492	91.278	50.087	2.318	1.691	1,63			
*KG042XP0	107,950	158,750	126,797	139,903	36.520	35.217	91.278	50.087	2.435	1.762	1,72			
*KG045XP0	114,300	165,100	133,147	146,253	38.966	36.498	97.372	52.267	2.721	1.913	1,81			
*KG047XP0	120,650	171,450	139,497	152,603	41.368	37.752	103.466	54.402	3.021	2.068	1,86		─ 25,4 ─	-
KG050XP0	127,000	177,800	145,847	158,953	43.815	38.975	109.515	56.537	3.339	2.228	1,95	F –		
*KG055XP0	139,700	190,500	158,547	171,653	46.262	39.941	115.609	58.628	3.818	2.474	2,13	/	\	
KG060XP0	152,400	203,200	171,247	184,353	51.110	42.271	127.797	62.675	4.544	2.820	2,31			1
*KG065XP0	165,100	215,900	183,947	197,053	53.557	43.206	133.891	64.633	5.100	3.087	2,45			1
*KG070XP0	177,800	228,600	196,647	209,753	58.405	45.407	146.035	68.503	5.935	3.461	2,63	1		25,4
KG075XP0	190,500	241,300	209,347	222,453			152.129	70.371	6.569	3.751	2,77			
KG080XP0	203,200	, , , , , , ,	222,047	235,153	65.700		164.317	74.063	7.511	4.151	2,95	L ₂		1——
KG090XP0	228,600	279,400	,	260,553	73.040	-	182.555	79.490	9.273	4.885	3,27	- 1		
KG100XP0	254,000	· '	272,847	285,953			200.793	84.694	11.221	5.663	3,58	L 1		
KG110XP0	279,400	330,200		311,353			219.075	89.765	13.354	6.479	3,90			
KG120XP0	304,800	,	/ -	336,753			237.313			7.336	4,22			
KG140XP0	355,600	,		1	109.515	1		104.133		9.158	4,90		v	
KG160XP0	406,400	, , , , , , , , , , , , , , , , , , ,	· ·	· · · · · ·	124.150			113.207		11.114	5,58			
KG180XP0	457,200	, ,	476,047	· · · · · ·	138.740			121.926		13.195	6,21			
KG200XP0	508,000	,	/ -	,	153.330			130.333		15.392	7,17			
KG220XP0	558,800		577,647		167.965			138.473		17.696	7,85			
KG250XP0	635,000	· '		,	189.850		474.625			21.335	8,84			
KG300XP0	762,000	812,800	780,847	793,953				168.943			10,57		3F = 2.03	
KG350XP0	889,000	,	, -	,	262.890				_		12,29		Alle Kanten gefa	st
KG400XP0	1016,000	1066,800	1034,847	1047,953	299.410	108.234	748.635	203.595	155.912	42.283	13,97		Ü	

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Gedichtete REALI-SLIM® Lagerauswahl Verfügbare Dichtungen und Deckscheiben

Um die Vorzüge von Wälzlagern auszunutzen, ist es wichtig, die Lager sauber und gut befettet zu halten. Um dies zu erreichen, wurden geeignete Dichtungen und Deckscheiben entwickelt. In diesem Katalog haben die Bezeichnungen die folgenden Bedeutungen:

Dichtung – eine Kontaktdichtung zwischen dem stationären und dem rotierenden Teil, um das Schmiermittel im Lager, und andererseits Fremdmaterialien vom Lagerinneren fern zu halten. Dichtungen werden in einer Nut im Außenring gehalten und haben positiven Kontakt zum Innernring.

Deckscheiben – eine Abdichtung zum gleichen Zweck wie eine Dichtung aber ohne positiven Kontakt.

Eine Dichtung ist effektiver, aber benötigt mehr Antriebsleistung (Drehmoment), erzeugt mehr Wärme und hat daraus resultierend eine geringere Maximaldrehzahl als ein Lager mit Deckscheiben.

Nebenstehende Illustrationen sind Beispiele, wie REALI-SLIM® Lager intern oder extern gedichtet oder gedeckelt werden können. Das Schmiermittel und Schmiersystem, Drehmomentanforderungen, Drehzahlen und Einsatzbedingungen bestimmen die Auswahl.

Integrierte Dichtungen und Deckscheiben bieten ein sehr kompaktes Gesamtdesign in Verbindung mit dem Vorteil, das Lager vor, während und nach der Montage zu schützen.

Bild 2-1 zeigt ein beidseitig gedichtetes REALI-SLIM® Lager, welches in der Serie JU ab Lager lieferbar ist. In diesem Fall beinflussen zusätzliche Deckscheiben und Dichtungen die Gesamtbreite des Lagers (siehe Seite 12, Position 2). Bei den JA, JB und JG beidseitig gedichteten REALI-SLIM® Lagern ist die Breite identisch mit den offenen Lagern.

In Bild 2-2 wird eine beidseitig gedichtetes LAMI-SEAL® Lager gezeigt. Bild 2-3 zeigt ein beidseitig gedichtetes LAMI-SHIELD® Lager für Anwendungen, bei denen eine Deckscheibe ausreicht bzw. wegen Drehzahl- oder Drehmomentbeschränkungen keine Dichtung verwendet werden kann.

Wo Gewicht oder Platz an erster Stelle stehen und eine einseitige Dichtung oder eine Deckscheibe ausreicht, können einseitig gedichtete oder gedeckelte Lager geliefert werden.

(Bilder 2-4, 2-5 und 2-6)

Anmerkung: Gedichtete REALI-SLIM® Lager sind mit einem Mehrzweckfett befüllt. Einsatzbedingungen (z.B. Zeit, Temperatur, Drehzahl, Umgebung) können eine vorzeitige Alterung des Schmiermittels bewirken. Eine Vielzahl von Schmiermitteln stehen für Ihre Spezifikation zur Verfügung.

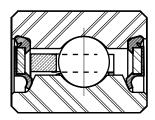


Bild 2-1 Beidseitig gedichtetes REALI-SLIM® Lager

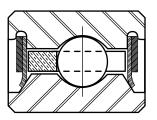


Bild 2-2 Beidseitig gedichtetes LAMI-SEAL® Lager

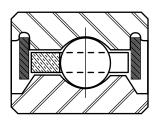


Bild 2-3 Beidseitig gedichtetes LAMI-SHIELD® Lager

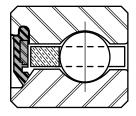


Bild 2-4 Einseitig gedichtetes REALI-SLIM® Lager

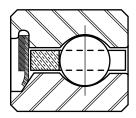


Bild 2-5 Einseitig gedichtetes LAMI-SEAL® Lager

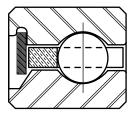
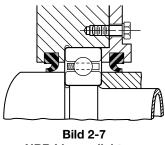


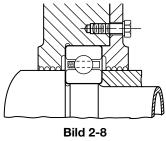
Bild 2-6 Einseitig gedichtetes LAMI-SHIELD® Lager

Anmerkung: Die Bilder dienen nur der Illustration und nicht als Konstruktionsvorlage.

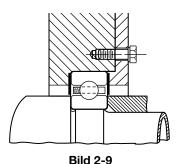
Gedichtete REALI-SLIM® Lagerauswahl Verfügbare Dichtungen und Deckscheiben (Fortsetzung)


Bild 2-7 zeigt eine NBR Lippendichtung zur Verwendung bei unterschiedlichen Lagerquerschnitten der REALI-SLIM® Lagerserie. Da es sich um eine sehr effektive Dichtung handelt, sind die Drehmomente substanziell und die Dauerdrehzahl darf 300 Meter pro Minute nicht über-

Für Anwendungen mit Fettschmierung und wenn das Drehmoment unkritisch ist, wird eine sehr effektive Abdichtungsvariante in Bild 2-8 gezeigt. Hierbei werden ringförmige Nuten ins Gehäuse geschnitten, das Lager mit Fett befüllt und mit einer Deckscheibe versehen.


Wenn seperate Deckscheiben benötigt werden, sind

Scheiben aus Präzisionsflachmaterial ideal (Bild 2-9). Sie sind bestens geeignet für Anwendungen mit Gewichtslimit.


Unabhängig davon, ob gedichtete oder gedeckelte Lager eingesetzt werden, müssen die Lager vor kontaminierter Umgebung und vor Fremdkörpern geschützt werden.

NBR Lippendichtung

Ringnuten

Scheiben aus Präzisionsflachmaterial

Gedichtete REALI-SLIM® Lagerauswahl Typ C Radialkugellager

	,	JHA S	ERIE	(BEIDS	EITIG G	EDICH	TET)			Schnappkäfig 2,381 mm Kugeln
KAYDON		Abmessun	gen in mm		Radiale T		Max.	Anlauf-	Gewicht	6,35
Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	stat. ^②	dyn.	Drehzahl (min ⁻¹)**	moment (Nm) ⁴	in kg	4,7625
JHA10CL0	25,400	34,925	28,143	32,360	1.290	836	6.110	0,035	0,02	
JHA15CL0	38,100	47,625	40,843	45,060	1.779	1.001	4.300	0,035	0,02	③ F = 0,38
JHA17CL0	44,450	53,975	47,193	51,410	2.046	1.077	3.750	0,042	0,03	Alle Kanten gefast

			Schnappkäfig 3,175 mm Kugeln							
KAYDON		Abmessun	gen in mm			ragzahlen N ^①	Max.	Anlauf-	Gewicht	-,
Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	stat. ^②	dyn.	Drehzahl (min ⁻¹)**	moment (Nm) ⁴	in kg	
JA020CP0	50,800	63,500	54,559	59,842	3.025	1.748	3.220	0,042	0,05	6,35 —
JA025CP0	63,500	76,200	67,259	72,542	3.692	1.966	2.630	0,056	0,05	F ~
JA030CP0	76,200	88,900	79,959	85,242	4.404	2.166	2.230	0,085	0,06	
JA035CP0	88,900	101,600	92,659	97,942	5.071	2.358	1.930	0,113	0,08	6,35
JA040CP0	101,600	114,300	105,359	110,642	5.738	2.540	1.700	0,141	0,09	│
JA042CP0	107,950	120,650	111,709	116,992	6.094	2.629	1.610	0,169	0,09	
JA045CP0	114,300	127,000	118,059	123,342	6.405	2.713	1.520	0,198	0,01	
*JA047CP0	120,650	133,350	124,409	129,692	6.761	2.798	1.450	0,226	0,10	
JA050CP0	127,000	139,700	130,759	136,042	7.073	2.882	1.380	0,254	0,10	
*JA055CP0	139,700	152,400	143,459	148,742	7.784	3.047	1.260	0,311	0,11	0 -
*JA060CP0	152,400	165,100	156,159	161,442	8.452	3.203	1.160	0,367	0,13	$\Im F = 0.64$
*JA065CP0	165.100	177.800	168.859	174.142	9.119	3.354	1.070	0.431	0.14	Alle Kanten gefast

- * Eingeschränkte Verfügbarkeit bitte Preis und Lieferzeiten erfragen.

 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
- Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das urmschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45 versehen.
 Die Angaben über das Drehmoment beziehen sich auf Einzellager mit Standardfettfüllung bei Raumtemperatur und unter einer Axiallast von 2,2 N.
 Empfohlene max. Drehzahl bei Standard-Messingkäfig. Die so errechnete Drehzahl gilt nur bei einer dynamischen Belastung bis 20 % der max. Tabellenwerte, bei höheren Belastungen ist
- Empfohlene max. Drehzahl bei Standard-Messingkäfig. Die so errechnete Drehzahl gilt nur bei einer dynamischen Belastung bis 20 % der max. Tabellenwerte, bei höheren Belastungen ist
- dieser Wert zu halbieren!

Typ C - Gedichtete REALI-SLIM® Lager, Radialkugellager

		JB SE	ERIE (BEIDSE	ITIG G	EDICHT	ET)			Schnappkäfig 3,968 mm Kugeln
KAYDON		Abmessun	gen in mm		Radiale T	ragzahlen N ^①	Max. Drehzahl	Anlauf- moment	Gewicht	
Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	stat. ²	dyn.	(min ⁻¹)**	(Nm) ⁴	in kg	
JB020CP0	50,800	66,675	55,855	61,595	4.137	2.567	3.130	0,042	0,07	
JB025CP0	63,500	79,375	68,555	74,295	5.071	2.865	2.580	0,056	0,09	7,9375 -
JB030CP0	76,200	92,075	81,255	86,995	5.961	3.145	2.190	0,085	0,10	´F — _
JB035CP0	88,900	104,775	93,955	99,695	6.850	3.412	1.900	0,113	0,12	
JB040CP0	101,600	117,475	106,655	112,395	7.784	3.670	1.630	0,141	0,14	7,9375
JB042CP0	107,950	123,825	113,005	118,745	8.140	3.763	1.600	0,169	0,14	L ₂
JB045CP0	114,300	130,175	119,355	125,095	8.674	3.914	1.500	0,198	0,15	-2 L ₁ ,
*JB047CP0	120,650	136,525	125,705	131,445	9.030	4.008	1.430	0,226	0,16	. = =
*JB050CP0	127,000	142,875	132,055	137,795	9.564	4.150	1.360	0,254	0,17	
*JB055CP0	139,700	155,575	144,755	150,495	10.498	4.377	1.240	0,311	0,18	05 404
*JB060CP0	152,400	168,275	157,455	163,195	11.387	4.600	1.150	0,367	0,20	③ F = 1,01 Alle Kanten gefast
*JB065CP0	165,100	180,975	170,155	175,895	12.277	4.813	1.060	0,431	0,21	, wo it can torr goldet

		JU SE	ERIE (BEIDSE	ITIG GI	EDICHT	ET)			Schnappkäfig 4,763 mm Kugeln
KAYDON		Abmessun	gen in mm		Radiale Ti	ragzahlen N ^①	Max. Drehzahl	Anlauf- moment	Gewicht	, ,
Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	stat. ^②	dyn.	(min ⁻¹)**	(Nm) ⁴	in kg	
JU040CP0	101,600	120,650	105,410	115,494	9.341	4.773	1.640	0,328	0,25	
JU042CP0	107,950	127,000	111,760	121,844	9.875	4.929	1.520	0,362	0,26	1 1
JU045CP0	114,300	133,350	118,110	128,194	10.409	5.084	1.440	0,395	0,28	12,7
JU047CP0	120,650	139,700	124,460	134,493	10.943	5.231	1.360	0,441	0,29	F -
JU050CP0	127,000	146,050	130,810	140,843	11.521	5.378	1.300	0,486	0,31	
JU055CP0	139,700	158,750	143,510	153,467	12.589	5.667	1.180	0,576	0,34	9,525
JU060CP0	152,400	171,450	156,210	166,167	13.656	5.947	1.080	0,689	0,37	
JU065CP0	165,100	184,150	168,910	178,740	14.746	6.214	1.000	0,791	0,39	
JU070CP0	177,800	196,850	181,610	191,440	15.791	6.481	920	0,915	0,42	L ₁ . '
JU075CP0	190,500	209,550	194,310	204,140	16.859	6.735	860	1,039	0,45	
JU080CP0	203,200	222,250	207,010	216,840	17.926	6.984	810	1,175	0,48	
JU090CP0	228,600	247,650	232,410	242,189	20.062	7.464	720	1,469	0,54	
JU100CP0	254,000	273,050	257,810	267,589	22.197	7.922	650	1,808	0,59	
JU110CP0	279,400	298,450	283,210	292,989	24.332	8.358	590	2,169	0,65	,65 3 F = 0,38 Alle Kanten gefast
JU120CP0	304,800	323,850	308,610	318,389	26.467	8.781	540	2,576	0,71	Alle Nai itei i gelast

- * Eingeschränkte Verfügbarkeit bitte Preis und Lieferzeiten erfragen.
 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
- ② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

- Lasten die dynamische Tragzani überschreiten, wenden sie sich olitte immer an unsere technische Abteilung.

 E = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

 Die Angaben über das Drehmoment beziehen sich auf Einzellager mit Standardfettfüllung bei Raumtemperatur und unter einer Axiallast von 2,2 N.

 ** Empfohlene max. Drehzahl bei Standard-Messingkäfig. Die so errechnete Drehzahl gilt nur bei einer dynamischen Belastung bis 20 % der max. Tabellenwerte, bei höheren Belastungen ist dieser Wert zu halbieren!

Typ C - Gedichtete REALI-SLIM® Lager, Radialkugellager

			Schnappkäfig 12,700 mm Kugeln								
KAYDON		Abmessun	gen in mm		Radiale T	ragzahlen N ^①	Max. Drehzahl	Anlauf- moment	Gewicht	25,4	
Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	stat. ²	dyn.	(min ⁻¹)**	(Nm) ⁴	in kg	25,4	
*JG120CP0	304,800	355,600	318,872	345,491	94.925	44.811	140	4,971	4,22	F	
*JG140CP0	355,600	406,400	369,672	396,291	109.515	48.423	125	6,666	4,90		
*JG160CP0	406,400	457,200	420,472	447,091	124.150	51.813	110	8,586	5,58	2	
*JG180CP0	457,200	508,000	471,272	497,891	138.740	55.011	100	10,733	6,21		
*JG200CP0	508,000	558,800	522,072	548,691	153.330	58.023	90	12,993	7,17	L ₂	
*JG220CP0	558,800	609,600	572,872	599,491	167.965	60.874	80	15,704	7,62		
*JG250CP0	635,000	685,800	649,072	675,691	189.850	64.904	75	19,997	8,84		
*JG300CP0	762,000	812,800	776,072	802,691	226.370	71.007	60	28,471	10,57	<u> </u>	
*JG350CP0	889,000	939,800	903,072	929,691	262.890	76.487	55	38,300	12,29		
*JG400CP0	1016,000	1066,800	1030,072	1056,691	299.410	81.434	50	49,711	13,97	Alle Kanten gefast	

Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.
 Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
 Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.
 Die Ansahen über des Prehmoment beziehen sich auf Einzellager mit Standardfeitfülllung bei Raumtemperatur und unter einer Axiallast von 2.2 N.

d Die Angaben über das Drehmoment beziehen sich auf Einzellager mit Standardfettfüllung bei Raumtemperatur und unter einer Axiallast von 2,2 N.

Empfohlene max. Drehzahl bei Standard-Messingkäfig. Die so errechnete Drehzahl gilt nur bei einer dynamischen Belastung bis 20 % der max. Tabellenwerte, bei höheren Belastungen ist dieser Wert zu halbieren!

Gedichtete REALI-SLIM® Lagerauswahl Typ X Vierpunktlager

JHA SERIE (BEIDSEITIG GEDICHTET)												Schnappkäfig 2,381 mm Kugeln		
	Abmessungen in mm						Tragz	ahlen			Max.	Anlauf-		6,35
KAYDON Lager	Dohmina	Außen-	α.	ØL₂	Radial (N)		Axial (N)		,		Drehzahl	moment	Gewicht	F
go.	Bohrung	Ø	Ø Lı	W L2	stat. ^②	dyn.	stat. ^②	dyn.	stat. ²	dyn.	(min ⁻¹)**	(Nm) ⁴	9	4,7625
JHA10XL0	25,400	34,925	28,143	32,360	1.290	1.099	3.247	1.646	19	12	3.000	0,035	0,02	
JHA15XL0	38,100	47,625	40,843	45,060	1.779	1.317	4.448	2.046	38	21	2.000	0,035	0,02	③ F = 0,38
JHA17XL0	44,450	53,975	47,193	51,410	2.046	1.419	5.071	2.224	50	26	1.710	0,042	0,03	Alle Kanten gefast

JA SERIE (BEIDSEITIG GEDICHTET)												Schnappkäfig 3,175 mm Kugeln		
			messungen in mm				Tragza	hlen			Max.	Anlauf-		-,
KAYDON Lager		Außen-	αı	Ø L2	Radia	al (N)	Axia	I (N)	Mome		Drehzahl	moment	Gewicht in kg	
Lagoi	Bohrung	Ø	Ø L ₁	Ø L2	stat. ^②	dyn.	stat. ^②	dyn.	stat. ^②	dyn.	(min ⁻¹)**	(Nm) ⁴	Kg	
JA020XP0	50,800	63,500	54,559	59,842	3.025	2.286	7.607	3.514	87	49	1.500	0,042	0,05	6,35 —
JA025XP0	63,500	76,200	67,259	72,542	3.692	2.593	9.297	4.048	130	68	1.200	0,056	0,05	F —
JA030XP0	76,200	88,900	79,959	85,242	4.404	2.860	10.987	4.493	181	89	830	0,085	0,06	6,35
JA035XP0	88,900	101,600	92,659	97,942	5.071	3.118	12.677	4.938	241	111	710	0,113	0,08	T
JA040XP0	101,600	114,300	105,359	110,642	5.738	3.363	14.323	5.382	310	136	620	0,141	0,09	L2
JA042XP0	107,950	120,650	111,709	116,992	6.094	3.483	15.168	5.605	347	149	580	0,169	0,09	,
JA045XP0	114,300	127,000	118,059	123,342	6.405	3.599	16.014	5.827	386	163	550	0,198	0,01	
*JA047XP0	120,650	133,350	124,409	129,692	6.761	3.710	16.859	6.005	428	177	520	0,226	0,10	
*JA050XP0	127,000	139,700	130,759	136,042	7.073	3.821	17.704	6.228	472	191	500	0,254	0,10	
*JA055XP0	139,700	152,400	143,459	148,742	7.784	4.039	19.394	6.583	567	221	450	0,311	0,11	
*JA060XP0	152,400	165,100	156,159	161,442	8.452	4.248	21.085	6.984	670	253	330	0,367	0,13	③ F = 0.64
*JA065XP0	165,100	177,800	168,859	174,142	9.119	4.453	22.775	7.340	781	286	300	0,431	0,14	Alle Kanten gefast

Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

⁽¹⁾ Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

Bei den angegebenen statischen Tragzahler mich für die Lägerserlen F, A und Y, wenden Sie sich mich ich der Lägerserlen Sie sich mich ich der Lägerserlen Sie sich wenden Sie sich mich sie der mischließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

c F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45 versehen.

d Die Angaben über das Drehmoment beziehen sich auf Einzellager mit Standardfettfüllung bei Raumtemperatur und unter einer Axiallast von 2,2 N.

** Empfohlene max. Drehzahl bei Standard-Messingkäfig. Die so errechnete Drehzahl gilt nur bei einer dynamischen Belastung bis 20 % der max. Tabellenwerte, bei höheren Belastungen ist

Empfohlene max. Drehzahl bei Standard-Messingkäfig. Die so errechnete Drehzahl gilt nur bei einer dynamischen Belastung bis 20 % der max. Tabellenwerte, bei höheren Belastungen ist dieser Wert zu halbieren!

JU SERIE (BEIDSEITIG GEDICHTET)											Schnappkäfi 4,763 mm Kug			
	ı			Tragza	hlen			Max.	Anlauf-		,			
KAYDON Lager	Dohmina	Außen-	Ø Lı	Ø L2	Radia	al (N)	Axial (N)		Moment (Nm)		Drehzahl	moment	Gewicht in kg	
	Bohrung	Ø	ושעו	Ø L2	stat.2	dyn.	stat.2	dyn.	stat. ²	dyn.	(min ⁻¹)**	(Nm) ⁴		
JU040XP0	101,600	120,650	105,410	115,494	9.341	6.303	23.398	9.831	520	263	620	0,328	0,25	
U042XP0	107,950	127,000	111,760	121,844	9.875	6.512	24.732	10.186	581	287	590	0,362	0,26	12,7
U045XP0	114,300	133,350	118,110	128,194	10.409	6.717	26.067	10.587	645	312	550	0,395	0,28	F
JU047XP0	120,650	139,700	124,460	134,493	10.943	6.921	27.401	10.943	714	338	520	0,441	0,29	
JU050XP0	127,000	146,050	130,810	140,843	11.521	7.117	28.736	11.299	785	365	500	0,486	0,31	
JU055XP0	139,700	158,750	143,510	153,467	12.589	7.504	31.404	11.966	938	420	450	0,576	0,34	L ₂
JU060XP0	152,400	171,450	156,210	166,167	13.656	7.873	34.073	12.633	1.104	478	410	0,689	0,37	. [
JU065XP0	165,100	184,150	168,910	178,740	14.724	8.234	36.787	13.300	1.285	540	380	0,791	0,39	
JU070XP0	177,800	196,850	181,610	191,440	15.791	8.590	39.456	13.923	1.478	603	350	0,915	0,42	
JU075XP0	190,500	209,550	194,310	204,140	16.859	8.928	42.125	14.546	1.685	670	330	1,039	0,45	
JU080XP0	203,200	222,250	207,010	216,840	17.926	9.261	44.794	15.168	1.906	739	310	1,175	0,48	
JU090XP0	228,600	247,650	232,410	242,189	20.062	9.902	50.131	16.325	2.387	885	220	1,469	0,54	
JU100XP0	254,000	273,050	257,810	267,589	22.197	10.516	55.469	17.482	2.924	1.040	200	1,808	0,59	0 -
JU110XP0	279,400	298,450	283,210	292,989	24.332	11.103	60.852	18.594	3.515	1.203	180	2,169	0,65	3 F = 0,38 Alle Kanten gef
JU120XP0	304,800	323,850	308,610	318,389	26.467	11.663	66.190	19.661	4.161	1.375	160	2,576	0,71	Alle Namen gen

- Eingeschränkte Verfügbarkeit bitte Preis und Lieferzeiten erfragen
- Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
- Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
- F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.
 Die Angaben über das Drehmoment beziehen sich auf Einzellager mit Standardfettfüllung bei Raumtemperatur und unter einer Axiallast von 2,2 N.
- Empfohlene max. Drehzahl bei Standard-Messingkäfig. Die so errechnete Drehzahl gilt nur bei einer dynamischen Belastung bis 20 % der max. Tabellenwerte, bei höheren Belastungen ist dieser Wert zu halbieren!

Typ X - Gedichtete REALI-SLIM® Lager, Vierpunktlager

JG SERIE (BEIDSEITIG GEDICHTET)												Schnappkäfig 12,700 mm Kugeln		
	Abmessungen in mm						Tragz	ahlen		Max.	Autour			
KAYDON	Außen-		Radia	Radial (N) Ax			xial (N) Moment (Nm)			Dreh- Anlauf-		25,4		
Lager	Bohrung	Ø	Ø Lı	Ø L2	stat. ^②	dyn.	stat. ²	dyn.	stat. ²	dyn.	(min ⁻ 1)**	(Nm) ⁴	in kg	
*JG120XP0	304,80	355,60	318,872	345,491	94.925	59.228	237.313	94.658	15.670	7.336	140	4,971	4,22	25,4
*JG140XP0	355,60	406,40	369,672	396,291	109.515	64.072	273.832	153.063	20.867	9.158	125	6,666	4,90	
*JG160XP0	406,40	457,20	420,472	447,091	124.150	68.614	310.352	113.207	26.799	11.114	110	8,586	5,58	
*JG180XP0	457,20	508,00	471,272	497,891	138.740	72.889	346.872	121.926	33.476	13.195	100	10,733	6,21	L ₁
*JG200XP0	508,00	558,80	522,072	548,691	153.330	76.923	383.348	130.333	40.899	15.392	90	12,993	7,17	
*JG220XP0	558,80	609,60	572,872	599,491	167.920	80.744	419.868	138.473	49.056	17.696	80	15,591	7,62	
*JG250XP0	635,00	685,80	649,072	675,691	189.850	86.118	474.625	150.261	62.693	21.335	75	19,997	8,84	·
*JG300XP0	762,00	812,80	776,072	802,691	226.370	94.302	565.814	168.943	89.119	27.854	60	28,471	10,57	3 F = 2,03
*JG350XP0	889,00	939,80	903,072	929,691	262.890	101.620	657.002	186.692	120.211	34.857	55	38,300	12,29	Alle Kanten gefast
*JG400XP0	1016,00	1066,80	1030,072	1056,691	281.617	108.234	748.635	203.595	155.912	42.283	50	49,711	13,97	

- * Eingeschränkte Verfügbarkeit bitte Preis und Lieferzeiten erfragen.
 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
 ② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 C F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.
 d Die Angaben über das Drehmoment beziehen sich auf Einzellager mit Standardfettfüllung bei Raumtemperatur und unter einer Axiallast von 2,2 N.
 ** Empfohlene max. Drehzahl bei Standard-Messingkäfig. Die so errechnete Drehzahl gilt nur bei einer dynamischen Belastung bis 20 % der max. Tabellenwerte, bei höheren Belastungen ist dieser Wert zu halbieren!

ENDURAKOTE® Beschichtung für korrosionsbeständige Lager (Serien L, N)

Einführung

ENDURAKOTE® Beschichtung schützt vor Korrosion und bietet eine substantielle Lebensdauerverbesserung in kontaminierter Umgebung. Die ENDURAKOTE® Beschichtung wird auf das konventionelle Lagermaterial wie z.B. AISI 52100 Stahl aufgebracht, und bietet eine Korrosionsbeständigkeit, die sonst nur Edelstahllager vorweisen. Die Beschichtung wird, ohne einen Bereich auszulassen, auf den gesamten Ring, inklusiv der Laufbahnen aufgebracht. Andere gängige Chrom- oder Cadmium-Beschichtungen haften wegen der Belastung beim Abrollen der Kugeln nicht auf der Laufbahn. Die ENDURAKOTE® Beschichtung ist eine elektrolytische Hartverchromung, die durch einen patentrechtlich geschützten Prozess eine echte molekulare Verbindung erreicht, und die trotz der hohen Belastungen auf die Laufbahn durch das Abrollen der Kugeln nicht abblättert. Da der Prozess durch eine besondere Technik mit geringer Wärme unter 80° C abläuft, ergeben sich keine strukturellen Veränderungen der zu beschichtenden Materialien.

Labor- und Feldversuche haben die Vorteile dieses Beschichtungsprozesses bewiesen. Harte Salzsprühtests haben gezeigt, dass ENDURAKOTE® beschichtete Lager genauso korrosionsbeständig sind, oder sogar besser abschnitten als AISI 440C Edelstahllager. Die durch die Beschichtung entstandene harte, dichte Oberfläche ist extrem verschleißfest und garantiert die Aufrechterhaltung des Schmierfilms. Konventionelle Lebensdauertests mit ENDURAKOTE® beschichteten AISI 52100 Stahllagern haben keine Reduzierung der Lebensdauer gezeigt. Tatsächlich schützt die extrem harte Oberfläche der ENDURAKOTE® Beschichtung die Lager vor Oberflächenschäden, die zum vorzeitigen Ausfall der Lager führen könnten. Da die Beschichtung in der Lage ist, extrem hohen Temperaturen standzuhalten, wird das Lager nur durch die restlichen Materialien oder die Schmiermittel eingeschränkt.

Das Beschichtungsmaterial, das für die ENDURAKOTE® Beschichtung verwendet wird, kann für jeden Lagertyp und die meisten Lagermaterialien verwendet werden. Der wesentliche Vorteil besteht darin, das Lagerware aus AISI 52100 etc. mit den dazugehörenden Vorteilen in ein verschleißfestes und korrosionsbeständiges Lager verwandelt werden kann. Dies ist besonders nützlich für große Durchmesser oder wo schnelle Lieferung von Bedeutung ist. So kann gegenüber exotischen oder speziellen Materialien ein Kostenvorteil erreicht werden. Auch kann zur schnellen Lieferung Lagerware mit ENDURAKOTE® beschichtet werden.

Das heißt, dass wir vorrätige Standard AISI 52100-Lager anbieten können, die sowohl die Leistung konventioneller Lager bieten, als auch die Korrosionsbeständigkeit von AISI 440C Edelstahllagern.

Anwendung

ENDURAKOTE® Beschichtung bietet Korrosionsbeständigkeit und steigert effektiv die Abriebfestigkeit bei durchrutschendem Oberflächenkontakt wie bei käfiggeführten Laufbahnen. Die mikro Oberflächenbeschaffenheit von ENDURAKOTE® Beschichtung hilft bei der Verteilung des Schmiermittels und wertet Standardmetalle dahingehend auf, dass sie über einen breites Anwendungsspektrum Probleme, wie z.B. Festgehen des Lagers oder hohe Reibung reduzieren oder eliminieren.

Vorteile

Die ENDURAKOTE® Beschichtung trägt unter normalen Bedingungen weniger als 0,005 mm auf. Daher kann die Beschichtung oft für speziell ausgewählte Standardlager verwendet werden. Die ENDURAKOTE® Beschichtung ist kompatibel mit den meisten Eisen und Nichteisenmetallen, und erlaubt daher ein Maximum an Flexibilität bei der Materialauswahl. Die ENDURAKOTE® Beschichtung ist normalerweise eine abschließende Behandlung, seine Qualität ist bei jedem Basismaterial konstant und garantiert die Reproduzierbarkeit.

Eigenschaften

A. Härte

Die aufgetragene ENDURAKOTE® Beschichtung an sich hat eine gleichbleibende Härte von über 70 Rockwell "C".

B. Reibungskoeffizient

(Note: Die Messungen wurden bei 23°C durchgeführt, zu Vergleichszwecken unter Verwendung anderer Materialien.)

Material	Gegenmaterial	Statisch - Gleitend
Stahl	Stahl	0.30 – 0.20
Stahl	Messing, Bronze	0.25 – 0.20
Stahl	ENDURAKOTE® Beschichtung	0.17 – 0.16
Messing, Bronze	ENDURAKOTE® Beschichtung	0.15 – 0.13
ENDURAKOTE® Beschichtung	ENDURAKOTE® Beschichtung	0.14 – 0.12

ENDURAKOTE® Beschichtung für korrosionsbeständige Lager (Serien L, N) (Fortsetzung)

C. Adhesion

Unter Standard-Biegeversuchen oder unter verschiedenen Hitzeinduzierungen zeigt die ENDURAKOTE® Beschichtung kein Abschuppen, Brechen, Splittern, Schälen oder sonstiges Ablösen vom Basismaterial. Die Haftung ist ausreichend, um dem extrem hohen Kompressionsdruck in dem Kontaktbereich bei Kugel- und Rollenlagern zu widerstehen.

D. Auswirkungen

Die Reinheit der Chromoberfläche beträgt im aufgetragenen Zustand nicht unter 99%. Ein umfassendes Testprogramm hat gezeigt, dass Lager mit ENDURAKOTE® Beschichtung Belastungswerte und Lebensdauerwerte gleich oder besser als unbeschichtete AISI 52100 Stahllager bieten.

E. Korrosionsbeständigkeit

Die ENDURAKOTE® Beschichtung widersteht Angriffen der meisten organischen und anorganischen Verbindungen mit einem pH-Wert im Bereich von 4 bis 11, mit der Ausnahme von Schwefel- und Salzsäuren. Auch wenn Porösität des Basismetalls, Mischungskonzentration und Einwirkzeiten Korrosionsfaktoren sind, verbesert die ENDURAKOTE® Beschichtung in hohem Masse das Basismaterial. In zahlreichen Salzsprühtests wie auch in Tauchtests haben AISI 52100 Stahllager mit ENDURA-KOTE® Beschichtung die gleiche Korrosionsbeständigkeit wie gehärtete AISI 440C Edelstahllager bewiesen. In vielen Fällen ist die ENDURAKOTE® Beschichtung besser als Korrosionsschutz geeignet als Kadmiumbeschichtung, Zinkbeschichtung, Phosphatieren, Chromatieren, Eloxieren oder normales Chrombeschichten. Wir freuen uns auf Ihre Anfragen und arrangieren gerne Tests, um die ENDURA-KOTE® Beschichtung für spezielle Bedingungen zu qualifizieren.

F. Hitzebeständigkeit

REALI-SLIM® Lager mit ENDURAKOTE® Beschichtung sind ausgelegt, ihre Eigenschaften in einem Temperaturbereich von -54°C bis 120°C beizubehalten.

G. Oberflächenqualität

Die ENDURAKOTE® Beschichtung entspricht nicht der bestehenden Oberflächentextur. Ra finish wird leicht auf ca. 8 Ra verbessert; unter 4 Ra gibt es kaum noch Änderungen. Die ENDURAKOTE® Beschichtung hat eine matte oder Micro-orangenhaut Oberfläche mit sehr guter Schmiermittelhaftung für das Schmiermittel.

H. Lebensmittelindustrie

ENDURAKOTE® Beschichtung wird in der Lebensmittelindustrie eingesetzt.

I. Belastungsdaten

Die ENDURAKOTE® Beschichtung beeinflusst die statischen oder dynamischen Belastungswerte des Lagers nicht. Die Werte sind unter der entsprechenden Teilenummer beginnend mit "K" in den standard REALI-SLIM® Lagertabellen nachzulesen.

Lagergrößen

Die ENDURAKOTE® Beschichtung kann auf jedes REALI-SLIM® Lager aufgebracht werden.

Einschränkungen

Wir empfehlen die ENDURAKOTE® Beschichtung nicht für Anwendungen mit geringem Drehmoment bzw. drehmomentsensiblen Anwendungen.

Offene ENDURAKOTE®-beschichtete **ENDURA-SLIM® Lagerauswahl Typ A** Schrägkugellager

Ein Lager mit tiefen Laufbahnen und am Innen- oder Außenring einseitig zurückgeschliffenen Laufbahnen. Die Schnapp-Montage erlaubt die Verwendung eines einteiligen Kugeltaschenkäfigs mit einer höheren Anzahl von Kugeln. Diese Lager können radiale und einseitig wirkende axiale Kräfte aufnehmen und werden normalerweise zusammen mit einem weiteren Lager gleicher Bauart eingesetzt. Zu Ihrer Funktion benötigen Lager des Typs

A eine Axiallast. Um das gewünschte Lagerspiel/Lagervorspannung zu erreichen, müssen Einzellager bei der Montage zueinander eingestellt werden. Falls gewünscht, liefern wir Lagerpaare oder die passenden Distanzringe für Anwendungen, die höchste Präzision verlangen. Wir bieten diesen Service direkt ab Werk an.

	NAA SERIE												
		Abm	essungen ir	n mm		Tragzahlen in N ^①							
KAYDON Lager			۳.	~ .	٠.	Rac	lial	Ax	ial	Gewicht in kg	4,7625 —		
Layer	Bohrung	Außen-Ø	Ø L ₁	Ø L ₂	Ø L₃	statisch ²	dyn.	statisch ²	dyn.	III KY	F — 4,7625		
NAA10AG0	25,400	34,930	28,956	31,369	32,360	1.512	863	4.315	2.002	0,01	4,7023		
NAA15AG0	38,100	47,630	41,656	44,069	45,060	2.135	1.059	6.139	2.491	0,02	L2 L3 T		
NAA17AG0	44,450	53,980	48,006	50,419	51,410	2.358	1.117	6.761	2.669	0,02	^L 1 ③ F = 0,38		

	Kugeltaschenkäfig 3,175 mm Kugeln										
		Abm	essungen ir	n mm			Tragzah	len in N ^①			-,
KAYDON Lager	D-1	A 0	<i>a</i> .	<i>a</i> .	<i>α</i> .	Rac	lial	Ax	ial	Gewicht in kg	
Lugoi	Bohrung	Außen-Ø	Ø Lı	Ø L2	Ø L ₃	statisch ²	dyn.	statisch ²	dyn.	ııı ky	
NA020AR0	50,800	63,505	55,524	58,776	60,173	3.514	1.802	10.142	4.270	0,05	
NA025AR0	63,500	76,205	68,224	71,476	72,873	4.270	2.042	12.366	4.893	0,05	
NA030AR0	76,200	88,905	80,924	84,176	85,522	5.071	2.255	14.635	5.471	0,06	
NA035AR0	88,900	101,605	93,624	96,876	98,222	5.827	2.455	16.859	6.005	0,08	6,35 —
NA040AR0	101,595	114,308	106,324	109,576	110,922	6.628	2.647	19.127	6.539	0,09	6,55 — — — — — — — — — — — — — — — — — —
NA042AR0	107,945	120,658	112,674	115,926	117,221	7.028	2.740	20.239	6.806	0,09	
NA045AR0	114,295	127,008	119,024	122,276	123,571	7.384	2.834	21.396	7.028	0,01	
NA047AR0	120,645	133,358	125,374	128,626	129,921	7.784	2.923	22.508	7.295	0,10	
NA050AR0	126,995	139,708	131,724	134,976	136,271	8.185	3.007	23.620	7.518	0,10	L2 L3
NA055AR0	139,695	152,408	144,424	147,676	148,920	8.985	3.181	25.889	8.007	0,11	L1
NA060AR0	152,395	165,108	157,124	160,376	161,620	9.742	3.345	28.113	8.452	0,13	
NA065AR0	165,095	177,808	169,824	173,076	174,269	10.542	3.505	30.381	8.896	0,14	
NA070AR0	177,795	190,508	182,524	185,776	186,969	11.299	3.661	32.650	9.341	0,15	
NA075AR0	190,495	203,208	195,224	198,476	199,669	12.099	3.812	34.874	9.742	0,15	
NA080AR0	203,195	215,908	207,924	211,176	212,319	12.855	3.959	37.143	10.142	0,16	
NA090AR0	228,595	241,308	233,324	236,576	237,668	14.412	4.244	41.635	10.987	0,19	
NA100AR0	253,995	266,708	258,724	261,976	263,017	15.969	4.511	46.128	11.743	0,20	③ F = 0.64
NA110AR0	279,395	292,108	284,124	287,376	288,366	17.526	4.769	50.621	12.500	0,23	Alle Kanten gefas
*NA120AR0	304,795	317,508	309,524	312,776	313,665	19.083	5.018	55.113	13.211	0,24	90.00

Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen

Engeschrankte verugdarkeit – Ditte Preis und Lieterzeiten errägen.
 Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
 Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ A - Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Schrägkugellager

	Kugeltaschenkäfig 3,968 mm Kugeln										
		Abm	essungen i	n mm			Tragzah	len in N ^①			3,444
KAYDON Lager			٠.	٠	٠.	Rac	dial	Ах	ial	Gewicht in kg	
Layei	Bohrung	Außen-Ø	Ø Lı	Ø L2	Ø L₃	statisch ²	dyn.	statisch ²	dyn.	III NY	
NB020AR0	50,800	66,680	56,667	60,782	62,586	4.849	2.673	14.012	6.139	0,07	
NB025AR0	63,500	79,380	69,367	73,482	75,286	5.961	3.003	17.170	7.073	0,09	
NB030AR0	76,200	92,080	82,067	86,182	87,935	6.895	3.265	19.884	7.784	0,10	
NB035AR0	88,900	104,780	94,767	98,882	100,635	7.962	3.563	23.042	8.585	0,12	
NB040AR0	101,595	117,483	107,467	111,582	113,284	9.074	3.848	26.200	9.341	0,14	
NB042AR0	107,945	123,833	113,817	117,932	119,634	9.564	3.963	27.579	9.653	0,14	7,9375 -
*NB045AR0	114,295	130,183	120,167	124,282	125,984	10.009	4.079	28.913	9.964	0,15	F_ <u> </u>
*NB047AR0	120,645	136,533	126,517	130,632	132,334	10.631	4.230	30.737	10.409	0,16	
*NB050AR0	126,995	142,883	132,867	136,982	138,684	11.121	4.342	32.072	10.720	0,17	7,93
NB055AR0	139,695	155,583	145,567	149,682	151,333	12.188	4.595	35.230	11.387	0,18	.
NB060AR0	152,395	168,283	158,267	162,382	164,033	13.300	4.840	38.388	12.055	0,20	
*NB065AR0	165,095	180,983	170,967	175,082	176,733	14.234	5.035	41.102	12.633	0,21	L ₁ — √ - 3
*NB070AR0	177,795	193,683	183,667	187,782	189,382	15.346	5.267	44.304	13.256	0,23	
*NB075AR0	190,495	206,383	196,367	200,482	202,057	16.458	5.494	47.463	13.878	0,24	
*NB080AR0	203,195	219,083	209,067	213,182	214,706	17.526	5.712	50.621	14.501	0,26	
NB090AR0	228,595	244,483	234,467	238,582	240,055	19.572	6.094	56.492	15.613	0,29	
*NB100AR0	253,995	269,883	259,867	263,982	265,405	21.752	6.499	62.809	16.725	0,32	
*NB110AR0	279,395	295,283	285,267	289,382	290,754	23.798	6.850	68.681	17.793	0,35	
*NB120AR0	304,795	320,683	310,667	314,782	316,103	25.978	7.220	74.997	18.861	0,39	
*NB140AR0	355,595	371,483	361,467	365,582	366,751	30.070	7.860	86.740	20.773	0,44	
*NB160AR0	406,395	422,283	412,267	416,382	417,398	34.296	8.483	98.973	22.686	0,51	③ F = 1,02
*NB180AR0	457,195	473,083	463,067	467,182	467,995	38.522	9.065	111.161	24.510	0,57	Alle Kanten gefast
*NB200AR0	507,995	523,883	513,867	517,982	518,566	42.747	9.617	123.349	26.244	0,63	

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ A - Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Schrägkugellager

	NC SERIE													
		Abm	essungen iı	n mm			Tragzah	len in N ^①			4,763 mm Kugeln			
KAYDON Lager	D-1		<i>~</i> .	۵.	۵.	Rad	dial	Ax	ial	Gewicht in kg				
Lugoi	Bohrung	Außen-Ø	Ø Lı	Ø L2	Ø L ₃	statisch ²	dyn.	statisch ²	dyn.	9				
NC040AR0	101,595	120,658	108,636	113,614	115,672	11.343	5.129	32.739	12.322	0,20				
*NC042AR0	107,945	127,008	114,986	119,964	122,022	12.055	5.311	34.785	12.811	0,21				
NC045AR0	114,295	133,358	121,336	126,314	128,321	12.722	5.489	36.787	13.300	0,22				
NC047AR0	120,645	139,708	127,686	132,664	134,671	13.434	5.667	38.789	13.790	0,23				
NC050AR0	126,995	146,058	134,036	139,014	141,021	14.145	5.841	40.790	14.234	0,24				
NC055AR0	139,695	158,758	146,736	151,714	153,721	15.302	6.112	44.126	14.991	0,26	9,525 —			
NC060AR0	152,395	171,458	159,436	164,414	166,370	16.681	6.441	48.130	15.925	0,29	F			
*NC065AR0	165,095	184,158	172,136	177,114	179,070	18.060	6.757	52.133	16.770	0,31				
NC070AR0	177,795	196,858	184,836	189,814	191,770	19.216	7.006	55.469	17.482	0,34	4 9,525			
*NC075AR0	190,495	209,558	197,536	202,514	204,419	20.595	7.304	59.517	18.327	0,35				
NC080AR0	203,195	222,258	210,236	215,214	217,119	22.019	7.598	63.521	19.127	0,38				
*NC090AR0	228,595	247,658	235,636	240,614	242,468	24.554	8.105	70.860	20.595	0,44	-1			
*NC100AR0	253,995	273,058	261,036	266,014	267,818	27.312	8.638	78.867	22.108	0,47				
*NC110AR0	279,395	298,458	286,436	291,414	293,167	29.892	9.106	86.251	23.487	0,52				
*NC120AR0	304,795	323,858	311,836	316,814	318,516	32.428	9.550	93.591	24.777	0,56				
*NC140AR0	355,595	374,658	362,636	367,614	369,189	37.765	10.440	108.981	27.446	0,65				
*NC160AR0	406,395	425,458	413,436	418,414	419,837	43.059	11.267	124.328	29.937	0,74				
*NC180AR0	457,195	476,258	464,236	469,214	470,484	48.397	12.041	139.719	32.383	0,83				
*NC200AR0	507,995	527,058	515,036	520,014	521,132	53.512	12.735	154.442	34.607	0,92	@F 100			
*NC250AR0	634,995	654,058	642,036	647,014	647,700	66.279	14.381	192.519	40.079	1,14	③ F = 1,02 Alle Kanten gefast			
*NC300AR0	761,995	781,058	769,036	774,014	774,294	79.890	15.840	230.640	45.194	1,37	, and realition golder			

	ND SERIE													
		Abm	essungen ir	n mm			Tragzahl	len in N ^①			6,350 mm Kugeln			
KAYDON Lager			٠	~ ·	. ۳.	Rac	dial	Ax	ial	Gewicht in kg				
Lago	Bohrung	Außen-Ø	Ø L ₁	Ø L2	Ø L ₃	statisch ²	dyn.	statisch ²	dyn.	III Kg				
ND040AR0	101,595	127,008	110,998	117,602	120,421	15.791	8.091	45.639	18.949	0,36				
ND042AR0	107,945	133,358	117,348	123,952	126,771	16.681	8.345	48.174	19.661	0,38				
ND045AR0	114,295	139,708	123,698	130,302	133,121	17.571	8.590	50.710	20.328	0,40				
ND047AR0	120,645	146,058	130,048	136,652	139,446	18.460	8.834	53.245	20.996	0,42				
ND050AR0	126,995	152,408	136,398	143,002	145,796	19.305	9.074	55.781	21.663	0,44				
ND055AR0	139,695	165,108	149,098	155,702	158,445	21.085	9.541	60.852	22.953	0,48	12,7			
ND060AR0	152,395	177,808	161,798	168,402	171,145	22.819	9.995	65.923	24.198	0,52	F			
ND065AR0	165,095	190,508	174,498	181,102	183,794	24.599	10.436	70.994	25.444	0,56				
ND070AR0	177,795	203,208	187,198	193,802	196,494	26.334	10.863	76.065	26.645	0,60				
ND075AR0	190,495	215,908	199,898	206,502	209,194	28.113	11.281	81.136	27.801	0,64				
ND080AR0	203,195	228,608	212,598	219,202	221,844	29.848	11.686	86.207	28.958	0,69	L ₁ L ₃			
ND090AR0	228,595	254,008	237,998	244,602	247,193	33.362	12.468	96.348	31.182	0,77				
*ND100AR0	253,995	279,408	263,398	270,002	272,593	36.876	13.220	106.490	33.362	0,85				
*ND110AR0	279,395	304,808	288,798	295,402	297,942	40.390	13.936	116.632	35.408	0,93				
ND120AR0	304,795	330,208	314,198	320,802	323,291	43.904	14.626	126.774	37.454	1,01				
*ND140AR0	355,595	381,008	364,998	371,602	373,990	50.932	15.934	147.058	41.324	1,17				
*ND160AR0	406,395	431,808	415,798	422,402	424,637	57.960	17.152	167.342	45.061	1,33				
*ND180AR0	457,195	482,608	466,598	473,202	475,285	64.989	18.296	187.626	48.619	1,49				
*ND200AR0	507,995	533,408	517,398	524,002	525,907	72.017	19.376	207.910	52.089	1,66				
*ND210AR0	533,395	558,808	542,798	549,402	551,180	75.535	19.892	218.052	53.761	1,74	0 = 1 = 0			
*ND250AR0	634,995	660,408	644,398	651,002	652,475	89.587	21.832	258.620	60.229	2,06	③ F = 1,52 Alle Kanten gefast			
*ND300AR0	761,995	787,408	771,398	778,002	779,069	107.158	24.007	309.329	67.880	2,47	7 mo ranton golast			

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

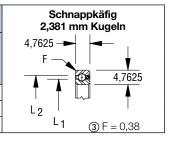
① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

	Kugeltaschenkäfig 9,525 mm Kugeln										
		Abmo	essungen ir	n mm			Tragzahl	len in N ^①			
KAYDON Lager	Dohwing	Augen Ø	Ø L ₁	Ø L 2	Ø L₃	Rac	lial	Ax	tial	Gewicht in kg	
_~gv.	Bohrung	Außen-Ø	Ø Li	Ø L 2	Ø L3	statisch ²	dyn.	statisch ²	dyn.	9	
*NF040AR0	101,595	139,708	115,697	125,603	129,921	28.246	16.619	81.580	37.454	0,87	
*NF042AR0	107,945	146,058	122,047	131,953	136,271	29.358	16.926	84.739	38.388	0,93	
*NF045AR0	114,295	152,408	128,524	138,303	142,621	31.538	17.642	91.011	40.256	0,97	
NF047AR0	120,645	158,758	134,747	144,653	148,971	32.606	17.944	94.124	41.191	1,02	
*NF050AR0	126,995	165,108	141,097	151,003	155,321	33.673	18.242	97.283	42.080	1,07	
NF055AR0	139,695	177,808	153,797	163,703	167,970	36.965	19.212	106.668	44.749	1,17	19,05
NF060AR0	152,395	190,508	166,497	176,403	180,670	40.212	20.150	116.099	47.374	1,23	F _ 10,00
NF065AR0	165,095	203,208	179,197	189,103	193,370	43.459	21.058	125.529	49.909	1,33	
*NF070AR0	177,795	215,908	191,897	201,803	206,070	46.751	21.939	134.915	52.356	1,43	
NF075AR0	190,495	228,608	204,597	214,503	218,694	48.930	22.472	141.187	53.957	1,54	19,05
NF080AR0	203,195	241,308	217,297	227,203	231,394	52.178	23.318	150.617	56.359	1,64	
NF090AR0	228,595	266,708	242,697	252,603	256,743	58.672	24.946	169.433	60.941	1,79	L ₂ L ₃
NF100AR0	253,995	292,108	268,097	278,003	282,092	64.143	26.200	185.135	64.633	2,00	L1
*NF110AR0	279,395	317,508	293,497	303,403	307,492	70.638	27.699	203.951	68.947	2,15	
NF120AR0	304,795	342,908	318,897	328,803	332,842	76.065	28.856	219.653	72.462	2,36	
*NF140AR0	355,595	393,708	369,697	379,603	383,591	88.030	31.329	254.171	79.846	2,61	
*NF160AR0	406,395	444,508	420,497	430,403	434,289	99.996	33.642	288.645	86.918	3,07	
*NF180AR0	457,195	495,308	471,297	481,203	485,038	113.029	36.044	326.321	94.347	3,48	
*NF200AR0	507,995	546,108	522,097	532,003	535,737	124.995	38.086	360.840	100.886	3,84	
*NF250AR0	634,995	673,108	649,097	659,003	662,559		42.636	445.712	116.099	4,76	
*NF300AR0	761,995	800,108	776,097	786,003	789,305		46.853	533.342	130.911	5,67	③ F = 2,03
*NF350AR0	888,995	927,108	903,097	913,003	916,026	215.205	50.630	621.416	144.923	6,62	Alle Kanten gefast
*NF400AR0	1015,995	1054,108	1030.097	1040.003	1042.772	245.631	54.033	709.046	158.268	7,53	2 : 12 12 32.001

	NG SERIE													
		Abm	essungen ir	n mm			Tragzah	len in N ^①			12,700 mm Kugeln			
KAYDON Lager			<i>~</i> .	<i>~</i> .	~ .	Rac	dial	Ах	tial	Gewicht in kg				
Layer	Bohrung	Außen-Ø	Ø L ₁	Ø L ₂	Ø L₃	statisch ²	dyn.	statisch ²	dyn.	III NY				
*NG040AR0	101,595	152,408	120,447	133,553	139,471	42.169	27.939	121.703	60.629	1,64				
*NG042AR0	107,945	158,758	126,797	139,903	145,821	44.260	28.638	127.797	62.675	1,74				
*NG045AR0	114,295	165,108	133,147	146,253	152,121	46.395	29.189	133.891	64.632	1,79				
*NG047AR0	120,645	171,458	139,497	152,603	158,471	48.485	30.003	139.940	66.590	1,89				
*NG050AR0	126,995	177,808	145,847	158,953	164,821	50.576	30.679	146.034	68.502	2,01				
*NG055AR0	139,695	190,508	158,547	171,653	177,521	54.802	31.992	158.223	72.239	2,15	25,4			
NG060AR0	152,395	203,208	171,247	184,353	190,221	59.028	33.273	170.366	75.886	2,30	F - 23,1 1			
*NG065AR0	165,095	215,908	183,947	197,053	202,870	63.253	34.523	182.554	79.489	2,45				
*NG070AR0	177,795	228,608	196,647	209,753	215,570	67.435	35.741	194.742	82.959	2,66	<i> </i> ////////////////////////////////			
NG075AR0	190,495	241,308	209,347	222,453	228,270	71.661	36.933	206.886	86.384	2,81	25,4			
NG080AR0	203,195	254,008	222,047	235,153	240,919	75.886	38.103	219.074	89.765	2,97				
NG090AR0	228,595	279,408	247,447	260,553	266,319	84.338	40.359	243.406	96.259	3,27	L ₂			
NG100AR0	253,995	304,808	272,847	285,953	291,668	92.745	42.529	267.737	102.576	3,63	L ₁ L ₃			
*NG110AR0	279,395	330,208	298,247	311,353	317,017	101.197	44.602	292.069	108.714	3,94				
NG120AR0	304,795	355,608	323,647	336,753	342,417	109.604	46.622	316.445	114.675	4,30				
NG140AR0	355,595	406,408	374,447	387,553	393,141	126.462	50.434	365.108	126.151	4,94				
NG160AR0	406,395	457,208	425,247	438,353	443,840	143.321	54.010	413.772	137.138	5,62				
NG180AR0	457,195	508,008	476,047	489,153	494,589	160.224	57.373	462.613	147.680	6,26				
NG200AR0	507,995	558,808	526,847	539,953	545,287	177.083	60.549	511.098	157.867	6,89				
*NG220AR0	558,795	609,608	577,647	590,753	596,087	193.933	63.565	559.833	167.751	7,54				
*NG250AR0	634,995	685,808	653,847	666,953	672,109	219.207	67.786	632.979	182.020	8,53				
*NG300AR0	761,995	812,808	780,847	793,953	798,855	261.376	74.227	754.415	204.706	10,21	③ F = 2,03			
NG350AR0	888,995	939,808	907,847	920,953	925,576	303.545	79.988	876.295	226.147	11,88	Alle Kanten gefast			
*NG400AR0	1015.995	1066.808	1027,989	1047.953	1052.322	345.714	85.196	998.176	246.608	13,52	l			


^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
② Bei den angegebenen statischen Tragzahl avon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Offene ENDURAKOTE®-beschichtete **ENDURA-SLIM® Lagerauswahl Typ C** Radialkugellager

Ein im "Conrad-Verfahren" montiertes Lager, vorrangig entwickelt zur Aufnahme radialer Belastungen – tiefe Laufbahnen erlauben auch Axialkräfte in beiden Richtungen - wird oft eingesetzt in Verbindung mit weiteren Lagern.

	NAA SERIE												
KANDON		Abmessungen in mm Radiale Tragzahlen in N ^①											
KAYDON Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	statisch ²	dyn.	Gewicht in kg						
NAA10CL0	25,400	34,930	28,956	31,369	1.290	836	0,01						
NAA15CL0	38,100	47,630	41,656	44,069	1.779	1.001	0,02						
NAA17CL0	44,450	53,980	48,006	50,419	2.046	1.077	0,02						

			Schnappkäfig 3,175 mm Kugeln					
KAVDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Couricht	•,•
KAYDON Lager	Bohrung	Außen-Ø	Ø L1	Ø L2	statisch [®]	dyn.	Gewicht in kg	
NA020CP0	50,800	63,505	55,524	58,776	3.025	1.748	0,05	
NA025CP0	63,500	76,205	68,224	71,476	3.692	1.966	0,06	
NA030CP0	76,200	88,905	80,924	84,176	4.404	2.166	0,07	
NA035CP0	88,900	101,605	93,624	96,876	5.071	2.357	0,08	6,35 —
NA040CP0	101,595	114,308	106,324	109,576	5.738	2.539	0,09	F _
NA042CP0	107,945	120,658	112,674	115,926	6.094	2.628	0,09	
NA045CP0	114,295	127,008	119,024	122,276	6.405	2.713	0,10	6,35
NA047CP0	120,645	133,358	125,374	128,626	6.761	2.797	0,10	│ <u>.</u> ╵
NA050CP0	126,995	139,708	131,724	134,976	7.073	2.882	0,11	
NA055CP0	139,695	152,408	144,424	147,676	7.784	3.046	0,11	•
NA060CP0	152,395	165,108	157,124	160,376	8.452	3.202	0,13	
NA065CP0	165,095	177,808	169,824	173,076	9.119	3.353	0,14	
NA070CP0	177,795	190,508	182,524	185,776	9.786	3.500	0,14	
NA075CP0	190,495	203,208	195,224	198,476	10.453	3.647	0,15	
NA080CP0	203,195	215,908	207,924	211,176	11.121	3.785	0,17	
NA090CP0	228,595	241,308	233,324	236,576	12.500	4.056	0,20	
NA100CP0	253,995	266,708	258,724	261,976	13.834	4.309	0,23	③ F = 0,64
NA110CP0	279,395	292,108	284,124	287,376	15.168	4.558	0,24	Alle Kanten gefast
NA120CP0	304,795	317,508	309,524	312,776	16.547	4.794	0,25	

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteillung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung

⁽³⁾ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ C - Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Radialkugellager

		Schnappkäfig 3,968 mm Kugeln						
KAYDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Gewicht	o,ooo miii ragoiii
Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L ₂	statisch ²	dyn.	in kg	
NB020CP0	50,800	66,680	56,667	60,782	4.137	2.567	0,07	
NB025CP0	63,500	79,380	69,367	73,482	5.071	2.865	0,09	
NB030CP0	76,200	92,080	82,067	86,182	5.961	3.145	0,11	
NB035CP0	88,900	104,780	94,767	98,882	6.850	3.412	0,12	
NB040CP0	101,595	117,483	107,467	111,582	7.784	3.670	0,14	7,0075
NB042CP0	107,945	123,833	113,817	117,932	8.140	3.763	0,14	7,9375 -
NB045CP0	114,295	130,183	120,167	124,282	8.674	3.914	0,15	F → ♦
*NB047CP0	120,645	136,533	126,517	130,632	9.030	4.008	0,15	7,9375
NB050CP0	126,995	142,883	132,867	136,982	9.564	4.150	0,17	
*NB055CP0	139,695	155,583	145,567	149,682	10.498	4.377	0,19	
NB060CP0	152,395	168,283	158,267	162,382	11.387	4.600	0,20	
NB065CP0	165,095	180,983	170,967	175,082	12.277	4.813	0,21	- 1
*NB070CP0	177,795	193,683	183,667	187,782	13.211	5.022	0,23	
*NB075CP0	190,495	206,383	196,367	200,482	14.101	5.227	0,24	
NB080CP0	203,195	219,083	209,067	213,182	14.991	5.422	0,26	
*NB090CP0	228,595	244,483	234,467	238,582	16.814	5.801	0,30	
*NB100CP0	253,995	269,883	259,867	263,982	18.638	6.165	0,33	
*NB110CP0	279,395	295,283	285,267	289,382	20.417	6.512	0,34	
*NB120CP0	304,795	320,683	310,667	314,782	22.241	6.846	0,38	
*NB140CP0	355,595	371,483	361,467	365,582	25.844	7.473	0,48	
*NB160CP0	406,395	422,283	412,267	416,382	29.447	8.060	0,54	@F 100
*NB180CP0	457,195	473,083	463,067	467,182	33.095	8.612	0,61	③ F = 1,02 Alle Kanten gefast
*NB200CP0	507,995	523,883	513,867	517,982	36.698	9.132	0,68	,

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

③ Bei den angegebenen statischen Tragzahl aus wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ C - Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Radialkugellager

			NC SE	ERIE				Schnappkäfig 4,763 mm Kugeln
KAYDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Couricht	
Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	statisch ²	dyn.	Gewicht in kg	
NC040CP0	101,595	120,658	108,636	113,614	9.341	4.773	0,20	
NC042CP0	107,945	127,008	114,986	119,964	9.875	4.929	0,21	
NC045CP0	114,295	133,358	121,336	126,314	10.409	5.084	0,22	
NC047CP0	120,645	139,708	127,686	132,664	10.943	5.231	0,23	9,525
NC050CP0	126,995	146,058	134,036	139,014	11.521	5.378	0,26	F _
NC055CP0	139,695	158,758	146,736	151,714	12.589	5.667	0,27	
NC060CP0	152,395	171,458	159,436	164,414	13.656	5.947	0,29	9,525
NC065CP0	165,095	184,158	172,136	177,114	14.724	6.214	0,31	
NC070CP0	177,795	196,858	184,836	189,814	15.791	6.481	0,33	' †
NC075CP0	190,495	209,558	197,536	202,514	16.859	6.735	0,35	L ₂ L ₂
NC080CP0	203,195	222,258	210,236	215,214	17.926	6.984	0,38	L ₁ .
NC090CP0	228,595	247,658	235,636	240,614	20.062	7.464	0,43	
NC100CP0	253,995	273,058	261,036	266,014	22.197	7.922	0,48	
*NC110CP0	279,395	298,458	286,436	291,414	24.332	8.358	0,53	
NC120CP0	304,795	323,858	311,836	316,814	26.467	8.781	0,57	
NC140CP0	355,595	374,658	362,636	367,614	30.737	9.582	0,69	
NC160CP0	406,395	425,458	413,436	418,414	35.052	10.324	0,78	
*NC180CP0	457,195	476,258	464,236	469,214	39.322	11.023	0,88	
*NC200CP0	507,995	527,058	515,036	520,014	43.593	11.681	0,98	
*NC250CP0	634,995	654,058	642,036	647,014	54.268	13.176	1,22	③ F = 1,02 Alle Kanten gefast
*NC300CP0	761,995	781,058	769,036	774,014	64.989	14.501	1,46	Alle Nailtei i gelast

			Schnappkäfig 6,350 mm Kugeln					
KAYDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Gewicht	
Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	statisch ²	dyn.	in kg	
ND040CP0	101,595	127,008	110,998	2987,091	13.701	7.807	0,35	
ND042CP0	107,945	133,358	117,348	3148,381	14.190	7.949	0,38	→ 12,7 ←
ND045CP0	114,295	139,708	123,698	3309,671	15.213	8.278	0,40	F
ND047CP0	120,645	146,058	130,048	3470,961	15.702	8.416	0,43	
ND050CP0	126,995	152,408	136,398	3632,251	16.725	8.736	0,45	12,7
ND055CP0	139,695	165,108	149,098	3954,831	18.238	9.177	0,48	
ND060CP0	152,395	177,808	161,798	4277,411	19.795	9.608	0,53	L ₂
ND065CP0	165,095	190,508	174,498	4599,991	21.307	10.026	0,55	L ₁
ND070CP0	177,795	203,208	187,198	4922,571	22.819	10.431	0,59	
ND075CP0	190,495	215,908	199,898	5245,151	24.332	10.827	0,64	
ND080CP0	203,195	228,608	212,598	5567,731	25.844	11.210	0,69	
ND090CP0	228,595	254,008	237,998	6212,891	28.913	11.957	0,78	
ND100CP0	253,995	279,408	263,398	6858,051	31.938	12.664	0,85	
ND110CP0	279,395	304,808	288,798	7503,211	35.008	13.345	0,93	
ND120CP0	304,795	330,208	314,198	8148,371	38.032	14.003	1,02	
*ND140CP0	355,595	381,008	364,998	9438,691	44.126	15.244	1,24	
*ND160CP0	406,395	431,808	415,798	10729,011	50.220	16.405	1,41	
*ND180CP0	457,195	482,608	466,598	12019,331	56.270	17.495	1,58	
*ND200CP0	507,995	533,408	517,398	13309,651	62.364	18.522	1,75	
*ND210CP0	533,395	558,808	542,798	13954,811	65.416	19.012	1,83	© F 1 F0
*ND250CP0	634,995	660,408	644,398	16535,451	77.577	20.858	2,17	③ F = 1,52 Alle Kanten gefast
*ND300CP0	761,995	787,408	771,398	19587,058	92.790	22.922	2,60	,

 ^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.
 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
 ② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 ③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ C - Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Radialkugellager

			NF SE	RIE				Schnappkäfig 9,525 mm Kugeln
KANDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Ossaiski	
KAYDON Lager	Bohrung	Außen-Ø	Ø L1	Ø L2	statisch ²	dyn.	Gewicht in kg	
NF040CP0	101,595	139,708	115,697	125,603	23.843	15.831	0,86	
NF042CP0	107,945	146,058	122,047	131,953	25.088	16.258	0,91	
*NF045CP0	114,295	152,408	128,397	138,303	26.378	16.681	0,95	
NF047CP0	120,645	158,758	134,747	144,653	27.623	17.095	1,00	19,05
NF050CP0	126,995	165,108	141,097	151,003	28.869	17.508	1,04	F ~
NF055CP0	139,695	177,808	153,797	163,703	31.360	18.309	1,13	
NF060CP0	152,395	190,508	166,497	176,403	33.895	19.087	1,22	
NF065CP0	165,095	203,208	179,197	189,103	36.386	19.844	1,32	19,05
*NF070CP0	177,795	215,908	191,897	201,803	38.922	20.586	1,45	
NF075CP0	190,495	228,608	204,597	214,503	41.413	21.311	1,54	
NF080CP0	203,195	241,308	217,297	227,203	43.948	22.014	1,59	L ₂
NF090CP0	228,595	266,708	242,697	252,603	48.930	23.380	1,77	- _{L1}
NF100CP0	253,995	292,108	268,097	278,003	53.957	24.688	1,95	·
NF110CP0	279,395	317,508	293,497	303,403	58.983	25.947	2,18	
NF120CP0	304,795	342,908	318,897	328,803	64.010	27.156	2,36	
*NF140CP0	355,595	393,708	369,697	379,603	74.063	29.447	2,72	
*NF160CP0	406,395	444,508	420,497	430,403	84.071	31.600	3,22	
*NF180CP0	457,195	495,308	471,297	481,203	94.124	33.615	3,58	
*NF200CP0	507,995	546,108	522,097	532,003	104.177	35.524	4,04	
*NF250CP0	634,995	673,108	649,097	659,003	129.265	39.869	4,94	
*NF300CP0	761,995	800,108	776,097	786,003	154.353	43.717	5,90	@ F 202
*NF350CP0	888,995	927,108	903,097	913,003	179.486	47.165	6,85	③ F = 2,03 Alle Kanten gefast
*NF400CP0	1015,995	1054,108	1030,097	1040,003	204.574	50.274	7,80	, and i tailtoil goldet

				Schnappkäfig 12,700 mm Kugeln				
KANDON		Abmessur	igen in mm		Radiale Trag	zahlen in N ^①	Carricht	
KAYDON Lager	Bohrung	Außen-Ø	Ø Lı	Ø L ₂	statisch [©]	dyn.	Gewicht in kg	
*NG040CP0	101,595	152,408	120,447	133,553	36.520	27.201	1,63	
*NG042CP0	107,945	158,758	126,797	139,903	36.520	26.961	1,72	
*NG045CP0	114,295	165,108	133,147	146,253	38.966	27.922	1,81	
*NG047CP0	120,645	171,458	139,497	152,603	41.368	28.856	1,86	⊸ 25,4 ⊸
NG050CP0	126,995	177,808	145,847	158,953	43.815	29.763	1,95	F ¬
*NG055CP0	139,695	190,508	158,547	171,653	46.262	30.470	2,13	
*NG060CP0	152,395	203,208	171,247	184,353	51.110	32.210	2,31	
NG065CP0	165,095	215,908	183,947	197,053	53.557	32.886	2,45	
*NG070CP0	177,795	228,608	196,647	209,753	58.405	34.536	2,63	25,4
NG075CP0	190,495	241,308	209,347	222,453	60.852	35.190	2,77	
NG080CP0	203,195	254,008	222,047	235,153	65.700	36.765	2,95	
NG090CP0	228,595	279,408	247,447	260,553	73.040	38.891	3,27	L ₂
NG100CP0	253,995	304,808	272,847	285,953	80.335	40.941	3,58	.'
NG110CP0	279,395	330,208	298,247	311,353	87.630	42.916	3,90	^L 1
NG120CP0	304,795	355,608	323,647	336,753	94.925	44.811	4,22	
NG140CP0	355,595	406,408	374,447	387,553	109.515	48.423	4,90	
NG160CP0	406,395	457,208	425,247	438,353	124.150	51.813	5,58	<u> </u>
NG180CP0	457,195	508,008	476,047	489,153	138.740	55.011	6,21	
NG200CP0	507,995	558,808	526,847	539,953	153.330	58.023	7,17	
*NG220CP0	558,795	609,608	577,647	590,753	167.951	60.874	7,62	
*NG250CP0	634,995	685,808	653,847	666,953	189.850	64.904	8,84	
*NG300CP0	761,995	812,808	780,847	793,953	226.370	71.007	10,57	@F 202
*NG350CP0	888,995	939,808	907,847	920,953	262.890	76.487	12,29	③ F = 2,03 Alle Kanten gefast
*NG400CP0	1015,995	1066,808	1034,847	1047,953	299.410	81.434	13,97	7 IIIO I CAITCOIT GOICGE

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statische Deutschaft der Verwende von der Verwende von das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statische Deutschaft der Verwende von der Verwende v

schen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

§ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Offene ENDURAKOTE®-beschichtete **ENDURA-SLIM® Lagerauswahl Typ X** Vierpunktlager

Ein im "Conrad-Verfahren" montiertes Lager, entwickelt für Anwendungen mit unterschiedlichen Belastungen. Die einzigartige interne Geometrie erlaubt die Aufnahme radialer Lasten, axialer Lasten in beide Richtungen sowie Momentenlasten einzeln oder in jeder Kombination. Ein einzelnes Vierpunktlager kann in vielen Anwendungen zwei Lager ersetzen.

				NA	A SE	RIE						Schnappkäfig 2,381 mm Kugeln
	1	Abmessun	gen in mn	1			Tragzal	nlen ^①				4.7625
KAYDON Lager	Dahmuna	Augen Ø	Ø.		Radi	al (N)	Axia	l (N)	Momer	nt (Nm)	Gewicht in kg	F —
Lugoi	Bohrung Außen-Ø Ø L1 Ø L2		Ø L2	stat. ^②	dyn.	stat. ^②	dyn.	stat. ^②	dyn.	9	4,7625	
NAA10XL0	25,400	34,930	28,956	31,369	1.290	1.099	3.247	1.646	186	12	0,01	
NAA15XL0	1,500	47,630	41,656	44,069	1.779	1.317	4.448	2.046	231	21	0,02	L ₂
NAA17XL0	1,750	53,980	48,006	50,419	2.046	1.419	5.071	2.224	251	26	0,02	L ₁ ③ F = 0,38

			Schnappkäfig 3,175 mm Kugeln									
		Abmessun	gen in mm				Tragzah	nlen ^①				, · · · · · · · · · · · · · · · · · · ·
KAYDON Lager			۵.	۵.	Radi	al (N)	Axia	ıl (N)	Momen	t (Nm)	Gewicht in ka	
Lago	Bonrung	Außen-Ø	Ø L ₁	Ø L2	stat. ²	dyn.	stat. ^②	dyn.	stat. ^②	dyn.	ııı kg	
NA020XP0	50,800	63,505	55,524	58,776	3.025	2.286	7.607	3.514	87	49	0,05	
NA025XP0	63,500	76,205	68,224	71,476	3.692	2.593	9.297	4.048	130	68	0,06	
NA030XP0	76,200	88,905	80,924	84,176	4.404	2.860	10.987	4.493	181	89	0,07	0.05
NA035XP0	88,900	101,605	93,624	96,876	5.071	3.118	12.677	4.938	241	111	0,08	6,35
NA040XP0	101,595	114,308	106,324	109,576	5.738	3.363	14.323	5.382	310	136	0,09	
NA042XP0	107,945	120,658	112,674	115,926	6.094	3.483	15.168	5.605	347	149	0,09	6,35
NA045XP0	114,295	127,008	119,024	122,276	6.405	3.599	16.014	5.827	386	163	0,10	
NA047XP0	120,645	133,358	125,374	128,626	6.761	3.710	16.859	6.005	428	177	0,10	
NA050XP0	126,995	139,708	131,724	134,976	7.073	3.821	17.704	6.228	472	191	0,11	- L1
NA055XP0	139,695	152,408	144,424	147,676	7.784	4.039	19.394	6.583	567	221	0,11	
NA060XP0	152,395	165,108	157,124	160,376	8.452	4.248	21.085	6.984	670	253	0,13	
NA065XP0	165,095	177,808	169,824	173,076	9.119	4.453	22.775	7.340	781	286	0,14	
NA070XP0	177,795	190,508	182,524	185,776	9.786	4.653	24.465	7.695	902	321	0,14	
NA075XP0	190,495	203,208	195,224	198,476	10.453	4.844	26.156	8.051	1.030	358	0,15	
NA080XP0	203,195	215,908	207,924	211,176	11.121	5.031	27.846	8.407	1.167	395	0,17	
NA090XP0	228,595	241,308	233,324	236,576	12.500	5.391	31.227	9.074	1.468	475	0,20	
NA100XP0	253,995	266,708	258,724	261,976	13.834	5.734	34.607	9.697	1.801	560	0,23	05.004
*NA110XP0	279,395	292,108	284,124	287,376	15.168	6.059	37.988	10.320	2.170	650	0,24	\bigcirc F = 0,64 Alle Kanten gefast
NA120XP0	304,795	317,508	309,524	312,776	16.547	6.374	41.368	10.898	2.573	744	0,25	Allo Railton golast

Eingeschränkte Verfügbarkeit - bitte Preis und Lieferzeiten erfragen.

Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten divynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ X - Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Vierpunktlager

				NB	SER	IE						Schnappkäfig 3,968 mm Kugeln
		Abmessun	gen in mm				Tragza	hlen ^①				o,ooo miii Rageiii
KAYDON Lager	Dahmuna	A O	<i>α</i> .	<i>a</i> .	Radia	al (N)	Axia	al (N)	Mome	nt (Nm)	Gewicht in kg	
Lugoi	Bohrung	Außen-Ø	Ø L ₁	Ø L2	stat. ²	dyn.	stat. ^②	dyn.	stat.2	dyn.		
NB020XP0	50,800	66,680	56,667	60,782	4.137	3.372	10.409	5.027	122	74	0,07	
NB025XP0	63,500	79,380	69,367	73,482	5.071	3.772	12.633	5.738	181	101	0,09	
NB030XP0	76,200	92,080	82,067	86,182	5.961	4.150	14.902	6.405	251	131	0,11	
NB035XP0	88,900	104,780	94,767	98,882	6.850	4.511	17.170	7.073	332	164	0,12	
NB040XP0	101,595	117,483	107,467	111,582	7.784	4.853	19.439	7.651	426	199	0,14	7,9375 -
NB042XP0	107,945	123,833	113,817	117,932	8.140	4.982	20.328	7.918	471	217	0,14	F -
NB045XP0	114,295	130,183	120,167	124,282	8.674	5.182	21.707	8.229	530	238	0,15	
*NB047XP0	120,645	136,533	126,517	130,632	9.030	5.307	22.597	8.452	581	256	0,15	7,9375
NB050XP0	126,995	142,883	132,867	136,982	9.564	5.498	23.931	8.808	646	278	0,17	
NB055XP0	139,695	155,583	145,567	149,682	10.498	5.801	26.200	9.341	774	321	0,19	L ₂
NB060XP0	152,395	168,283	158,267	162,382	11.387	6.099	28.469	9.875	913	367	0,20	L ₁ "~"
NB065XP0	165,095	180,983	170,967	175,082	12.277	6.383	30.737	10.409	1.063	414	0,21	
*NB070XP0	177,795	193,683	183,667	187,782	13.211	6.663	33.006	10.898	1.226	464	0,23	
*NB075XP0	190,495	206,383	196,367	200,482	14.101	6.935	35.230	11.387	1.399	516	0,24	
NB080XP0	203,195	219,083	209,067	213,182	14.991	7.197	37.499	11.877	1.584	570	0,26	
NB090XP0	228,595	244,483	234,467	238,582	16.814	7.704	42.036	12.811	1.988	684	0,30	
*NB100XP0	253,995	269,883	259,867	263,982	18.638	8.189	46.528	13.701	2.438	805	0,33	
*NB110XP0	279,395	295,283	285,267	289,382	20.417	8.652	51.066	14.590	2.934	933	0,34	
*NB120XP0	304,795	320,683	310,667	314,782	22.241	9.097	55.603	15.435	3.476	1.067	0,38	
*NB140XP0	355,595	371,483	361,467	365,582	25.844	9.937	64.633	17.081	4.698	1.355	0,48	
NB160XP0	406,395	422,283	412,267	416,382	29.447	10.720	73.663	18.638	6.103	1.667	0,54	@ F 100
*NB180XP0	457,195	473,083	463,067	467,182	33.095	11.459	82.692	20.106	7.693	1.999	0,61	③ F = 1,02 Alle Kanten gefast
*NB200XP0	507,995	523,883	513,867	517,982	36.698	12.148	91.722	21.574	9.466	2.352	0,68	, and i tailtoil goldst

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
② Bei den angegebenen statischen Tragzahl ausgelagt aus die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ X - Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Vierpunktlager

				NC	SER	IE						Schnappkäfig 4,763 mm Kugeln
		Abmessun	gen in mm				Tragzah	len ^①				,
KAYDON Lager	Bohrung	AO Ø	Ø Lı	Ø L2	Radi	al (N)	Axia	I (N)	Momei	nt (Nm)	Gewicht in kg	
	Donrung	Außen-Ø	ØLi	Ø L2	stat. ^②	dyn.	stat. ^②	dyn.	stat. ^②	dyn.		
NC040XP0	101,595	120,658	108,636	113,614	9.341	6.303	23.398	9.831	520	263	0,20	
*NC042XP0	107,945	127,008	114,986	119,964	9.875	6.512	24.732	10.186	581	287	0,21	
NC045XP0	114,295	133,358	121,336	126,314	10.409	6.717	26.067	10.587	645	312	0,22	
NC047XP0	120,645	139,708	127,686	132,664	10.943	6.921	27.401	10.943	714	338	0,23	9,525 —
NC050XP0	126,995	146,058	134,036	139,014	11.521	7.117	28.736	11.299	785	365	0,26	F —
NC055XP0	139,695	158,758	146,736	151,714	12.589	7.504	31.404	11.966	938	420	0,27	
NC060XP0	152,395	171,458	159,436	164,414	13.656	7.873	34.073	12.633	1.104	478	0,29	9,525
NC065XP0	165,095	184,158	172,136	177,114	14.724	8.234	36.787	13.300	1.285	540	0,31	
NC070XP0	177,795	196,858	184,836	189,814	15.791	8.590	39.456	13.923	1.478	603	0,33	L ₂
*NC075XP0	190,495	209,558	197,536	202,514	16.859	8.928	42.125	14.546	1.685	670	0,35	L ₁
NC080XP0	203,195	222,258	210,236	215,214	17.926	9.261	44.794	15.168	1.906	739	0,38	·
NC090XP0	228,595	247,658	235,636	240,614	20.062	9.902	50.131	16.325	2.387	885	0,43	
NC100XP0	253,995	273,058	261,036	266,014	22.197	10.516	55.469	17.482	2.924	1.040	0,48	
NC110XP0	279,395	298,458	286,436	291,414	24.332	11.103	60.852	18.594	3.515	1.203	0,53	
NC120XP0	304,795	323,858	311,836	316,814	26.467	11.663	66.190	19.661	4.161	1.375	0,57	
NC140XP0	355,595	374,658	362,636	367,614	30.737	12.731	76.865	21.752	5.614	1.744	0,69	
NC160XP0	406,395	425,458	413,436	418,414	35.052	13.727	87.586	23.709	7.285	2.142	0,78	
*NC180XP0	457,195	476,258	464,236	469,214	39.322	14.657	98.261	25.622	9.173	2.566	0,88	
*NC200XP0	507,995	527,058	515,036	520,014	43.593	15.533	108.981	27.446	11.279	3.016	0,98	@ F 100
*NC250XP0	634,995	654,058	642,036	647,014	54.268	17.530	135.715	31.760	17.489	4.239	1,22	③ F = 1,02 Alle Kanten gefast
*NC300XP0	761,995	781,058	769,036	774,014	64.989	19.296	162.449	35.808	25.070	5.585	1,46	, mo i tai itori golast

				ND	SEF	RIE						Schnappkäfig 6,350 mm Kugeln
		Abmessun	gen in mm				Tragz	ahlen ^①				,
KAYDON Lager	Dahman	AO.a.r. (X	Ø.	Ø.	Radi	al (N)	Axia	ıl (N)	Momer	nt (Nm)	Gewicht in kg	
_augo:	Bohrung	Außen-Ø	Ø L ₁	Ø L ₂	stat. ²	dyn.	stat. ²	dyn.	stat. ²	dyn.		
ND040XP0	101,595	127,008	110,998	117,602	13.701	10.280	34.251	15.658	783	441	0,35	
ND042XP0	107,945	133,358	117,348	123,952	14.190	10.476	35.497	16.014	856	474	0,38	
ND045XP0	114,295	139,708	123,698	130,302	15.213	10.916	38.032	16.770	966	520	0,40	
ND047XP0	120,645	146,058	130,048	136,652	15.702	11.103	39.322	17.170	1.049	555	0,43	1 1
ND050XP0	126,995	152,408	136,398	143,002	16.725	11.530	41.858	17.882	1.169	604	0,45	12,7
ND055XP0	139,695	165,108	149,098	155,702	18.238	12.121	45.639	18.949	1.391	693	0,48	
ND060XP0	152,395	177,808	161,798	168,402	19.795	12.700	49.464	19.973	1.633	787	0,53	10.7
ND065XP0	165,095	190,508	174,498	181,102	21.307	13.256	53.245	20.996	1.894	884	0,55	12,7
ND070XP0	177,795	203,208	187,198	193,802	22.819	13.803	57.071	21.974	2.174	986	0,59	
ND075XP0	190,495	215,908	199,898	206,502	24.332	14.332	60.852	22.953	2.473	1.092	0,64	L ₂
ND080XP0	203,195	228,608	212,598	219,202	25.844	14.848	64.677	23.887	2.792	1.202	0,69	L ₁ ,
ND090XP0	228,595	254,008	237,998	244,602	28.913	15.840	72.284	25.755	3.488	1.434	0,78	
ND100XP0	253,995	279,408	263,398	270,002	31.938	16.797	79.890	27.535	4.261	1.680	0,85	
ND110XP0	279,395	304,808	288,798	295,402	35.008	17.708	87.497	29.225	5.110	1.940	0,93	
ND120XP0	304,795	330,208	314,198	320,802	38.032	18.585	95.103	30.915	6.038	2.213	1,02	
ND140XP0	355,595	381,008	364,998	371,602	44.126	20.244	110.316	34.118	8.124	2.797	1,24	
*ND160XP0	406,395	431,808	415,798	422,402	50.220	21.792	125.529	37.187	10.520	3.426	1,41	
ND180XP0	457,195	482,608	466,598	473,202	56.270	23.246	140.742	40.167	13.219	4.098	1,58	
ND200XP0	507,995	533,408	517,398	524,002	62.364	24.616	155.955	43.014	16.235	4.809	1,75	
*ND210XP0	533,395	558,808	542,798	549,402	65.433	25.275	163.561	44.393	17.862	5.177	1,83	Ø F 1 F0
*ND250XP0	634,995	660,408	644,398	651,002	77.577	27.735	193.987	49.731	25.127	6.739	2,17	$\Im F = 1,52$ Alle Kanten gefast
*ND300XP0	761,995	787,408	771,398	778,002	92.790	30.497	232.019	56.048	35.939	8.863	2,60	, iio i tai itori golast

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
② Bei den angegebenen statischen Tragzahl avon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ X - Offene ENDURAKOTE®-beschichtete ENDURA-SLIM® Vierpunktlager

				NF	SEF	RIE						Schnappkäfig 9,525 mm Kugeln
		Abmessun	gen in mm				Tragza	ahlen ^①				,
KAYDON Lager	Dahmuna	A 0	ø.	<i>α</i> .	Radi	al (N)	Axia	I (N)	Momer	nt (Nm)	Gewicht in kg	
_ugo.	Bohrung	Außen-Ø	Ø L ₁	Ø L2	stat. ^②	dyn.	stat. ^②	dyn.	stat. ²	dyn.] Ng	
NF040XP0	101,595	139,708	115,697	125,603	23.843	20.751	59.606	30.381	1.438	939	0,86	
NF042XP0	107,945	146,058	122,047	131,953	25.088	21.329	62.764	31.449	1.594	1.016	0,91	
NF045XP0	114,295	152,408	128,397	138,303	26.378	21.899	65.878	32.472	1.757	1.095	0,95	19,05
NF047XP0	120,645	158,758	134,747	144,653	27.623	22.455	69.036	33.495	1.929	1.177	1,00	F _ 10,000 1
NF050XP0	126,995	165,108	141,097	151,003	28.869	23.006	72.150	34.518	2.108	1.261	1,04	· \ _
NF055XP0	139,695	177,808	153,797	163,703	31.360	24.087	78.422	36.475	2.490	1.434	1,13	
NF060XP0	152,395	190,508	166,497	176,403	33.895	25.137	84.739	38.388	2.905	1.617	1,22	19,05
NF065XP0	165,095	203,208		189,103			91.011	40.256	3.351	1.807	1,32	19,03
NF070XP0	177,795	215,908	191,897	201,803	38.922	27.148	97.283	42.080	3.829	2.005	1,45	
NF075XP0	190,495	228,608	204,597	214,503			103.555	43.904	4.340	2.211	1,54	L ₂
NF080XP0	203,195	241,308	217,297	227,203			109.827	45.639	4.881	2.424	1,59	-2 '
NF090XP0	228,595	266,708	242,697	252,603			122.371	49.064	6.060	2.871	1,77	- '
NF100XP0	253,995	292,108	268,097	278,003	53.957	32.659	134.915	52.356	7.367	3.345	1,95	
NF110XP0	279,395	317,508	293,497	303,403	58.983	34.345	147.459	55.558	8.802	3.845	2,18	
NF120XP0	304,795			328,803			160.003	58.672	10.364	4.369	2,36	
NF140XP0	355,595	393,708	369,697	379,603			185.135	64.633	13.874	5.486	2,72	
*NF160XP0	,	444,508	· ·	430,403			210.223	70.371	17.885	6.688	3,22	
*NF180XP0	, , , , ,	495,308	471,297	481,203			235.311	75.887	22.415	7.969	3,58	
*NF200XP0	, , , , , , , ,	546,108	· · ·	532,003	-		260.443	81.180	27.454	9.324	4,04	
*NF250XP0	, , , , , , ,	673,108	649,097	•			323.163	93.724	42.277	12.997	4,94	
*NF300XP0	, , , , , , ,	800,108	776,097	,			385.928		60.286	17.027	5,90	③ F = 2,03
*NF350XP0	888,995	927,108	903,097	913,003	179.486	62.720	448.825	116.632	81.481	21.365	6,85	Alle Kanten gefast
*NF400XP0	1015,995	1054,108	1030,097	1040,003	45.990	66.875	511.545	127.308	105.874	25.966	7,80	9

				NG	SEF	RIE						Schnappkäfig 12,700 mm Kugeln
		Abmessun	gen in mm				Tragz	ahlen ^①				,
KAYDON Lager	D. I	A - : 0 - :	ø.	Ø.	Radi	al (N)	Axia	ıl (N)	Momei	nt (Nm)	Gewicht in kg	
Lugoi	Bonrung	Außen-Ø	Ø L ₁	Ø L2	stat. ²	dyn.	stat. ²	dyn.	stat. ²	dyn.	iii ky	
NG040XP0	101,595	152,408	120,447	133,553	36.520	35.492	91.278	50.087	2.318	1.691	1,63	
NG042XP0	107,945	158,758	126,797	139,903	36.520	35.217	91.278	50.087	2.435	1.762	1,72	
NG045XP0	114,295	165,108	133,147	146,253	38.966	36.498	97.372	52.267	2.721	1.913	1,81	
NG047XP0	120,645	171,458	139,497	152,603	41.368	37.752	103.466	54.402	3.021	2.068	1,86	
NG050XP0	126,995	177,808	145,847	158,953	43.815	38.975	109.515	56.537	3.339	2.228	1,95	─ ─ 25,4 ─ ►
NG055XP0	139,695	190,508	158,547	171,653	46.262	39.941	115.609	58.628	3.818	2.474	2,13	F —
NG060XP0	152,395	203,208	171,247	184,353	51.110	42.271	127.797	62.675	4.544	2.820	2,31	
NG065XP0	165,095	215,908	183,947	197,053	53.557	43.206	133.891	64.633	5.100	3.087	2,45	
NG070XP0	177,795	228,608	196,647	209,753	58.405	45.407	146.035	68.503	5.935	3.461	2,63	
NG075XP0	190,495	241,308	209,347	222,453			152.129	70.371	6.569	3.751	2,77	
NG080XP0	203,195	. ,	222,047	235,153			164.317	74.063	7.511	4.151	2,95	
NG090XP0	228,595	279,408	247,447	260,553	73.040	51.270	182.555	79.490	9.273	4.885	3,27	
NG100XP0	253,995	304,808	272,847	285,953	80.335	54.033	200.793	84.694	11.221	5.663	3,58	-2
NG110XP0	279,395	330,208	298,247	311,353	87.630		219.075	89.765	13.354	6.479	3,90	L ₁
NG120XP0	304,795			336,753			237.313		15.670	7.336	4,22	
NG140XP0	355,595	′	374,447	387,553	109.515		273.832		20.867	9.158	4,90	
NG160XP0	406,395	′		438,353			310.352		26.799	11.114	5,58	\ \ \
NG180XP0	457,195	1	· · ·	489,153			346.872		33.476	13.195	6,21	
NG200XP0	507,995	′	526,847	539,953			383.348		40.899	15.392	7,17	
NG220XP0	558,795		577,647	590,753			419.868		49.056	17.696	7,85	
NG250XP0	634,995	,	653,847	666,953			474.625		62.693	21.335	8,84	
NG300XP0	761,995	, , , , , , ,	780,847	793,953			565.814		89.119	27.854	10,57	③ F = 2,03
NG350XP0	888,995	,		920,953						34.857	12,29	Alle Kanten gefast
NG400XP0	1015,995	1066,808	1034,847	1047,953	299.410	108.234	748.635	203.595	155.912	42.283	13,97]

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min·1 (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Edelstahllager (Material Code S)

Edelstahllager werden dort eingesetzt wo hohe Präzision und Korrosionsbeständigkeit gefordert sind.

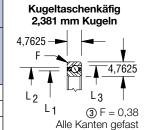
Unter heutigen Fertigungsbedingungen sind häufige Anforderungen:

- Einsatz in unmittelbarer Nähe von korrosiven Chemikalien
- Funktion mit Schmiermitteln, die nicht gegen Korrosion schützen
- Sofortiger Einsatz ultra-sauberer Lager ohne zusätzlichen Korrosionsschutz

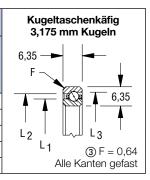
Weil jede dieser Anforderungen den Einsatz von standard 52100 Stahl unmöglich macht, bieten wir für diese Bedingungen REALI-SLIM® Dünnringlager in AISI 440C Edelstahl an. Dieser Stahl erreicht eine Mindesthärte von 58 HRc und kann die gleichen Lasten wie 52100 Chromstahl aufnehmen.

Alle Lager aus diesem Material haben auch AISI 440C Edelstahlkugeln.

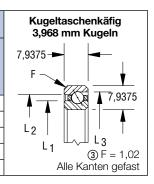
Bei Einsatz unter harten Umgebungsbedingungen minimieren REALI-SLIM® Edelstahl Dünnringlager Beschädigungen und Partikelablösung an der Oberfläche.


Verfügbarkeit:

- mit AISI 440C Edelstahllaufbahnen
- mit Messing oder nichtmetallischen Käfigen
- mit Edelstahl- oder Keramikkugeln
- in vielen Abmessungen
- als Radialkugellager "C", Schrägkugellager "A" oder Vierpunktlager "X"



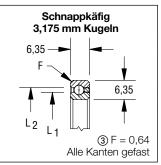
REALI-SLIM® Edelstahllager Typ A Schrägkugellager


				SAA	SER	ΙE								
Abmessungen in mm Tragzahlen in N ^①														
KAYDON Lager	Dahmuna	AOan Ø	4	Ø L ₂	Ø L ₃	Rac	dial	Ax	ial	Gewicht in kg				
24901	Bohrung	Außen-Ø	Ø L ₁	Ø L2		statisch ²	dyn.	statisch ²	dyn.	9				
*SAA10AG0	25,400	34,925	28,956	31,369	32,360	1.512	863	4.315	2.002	0,01				
*SAA15AG0	38,100	47,625	41,656	44,069	45,060	2.135	1.059	6.139	2.491	0,02				
*SAA17AG0	44,450	53,975	48,006	50,419	51,410	2.358	1.117	6.761	2.669	0,02				

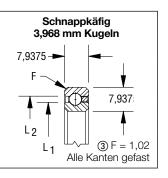
	SA SERIE												
		Abme	essungen iı	n mm			Tragzah	len in N ^①					
KAYDON Lager	Dobrung	Außen-Ø	Ø Lı	Ø L ₂	Ø L ₃	Rac	lial	Ах	ial	Gewicht in kg			
9	3		W Li	Ø L2	26	statisch ²	dyn.	statisch ²	dyn.	9			
*SA020AR0	50,800	63,500	55,524	58,776	60,173	3.514	1.802	10.142	4.270	0,05			
*SA025AR0	63,500	76,200	68,224	71,476	72,873	4.270	2.042	12.366	4.893	0,05			
*SA030AR0	76,200	88,900	80,924	84,176	85,522	5.071	2.255	14.635	5.471	0,06			
*SA035AR0	88,900	101,600	93,624	96,876	98,222	5.827	2.455	16.859	6.005	0,08			
*SA040AR0	101,600	114,300	106,324	109,576	110,922	6.628	2.647	19.127	6.539	0,09			

	SB SERIE													
	Abmessungen in mm Tragzahlen in N ^①													
KAYDON Lager	Dohmina	Außen-Ø	Ø Lı	Ø L ₂	Ø L ₃	Rac	dial	Ах	ial	Gewicht in kg				
go.	Bohrung	Auben-9	Ø Li	W L2	W L3	statisch ²	dyn.	statisch ²	dyn.					
*SB020AR0	50,800	66,675	56,667	60,782	62,586	4.849	2.673	14.012	6.139	0,07				
*SB025AR0	63,500	79,375	69,367	73,482	75,286	5.961	3.003	17.170	7.073	0,09				
*SB030AR0	76,200	92,075	82,067	86,182	87,935	6.896	3.265	19.884	7.784	0,10				
*SB035AR0	88,900	104,775	94,767	98,882	100,635	7.963	3.563	23.042	8.585	0,12				
*SB040AR0	101,600	117,475	107,467	111,582	113,284	9.076	3.848	26.200	9.341	0,14				

- * Eingeschränkte Verfügbarkeit bitte Preis und Lieferzeiten erfragen.


 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombi-
- Bei den angegebenen statischen Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
 Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45" versehen.

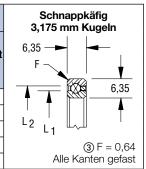
REALI-SLIM® Edelstahllager Typ C Radialkugellager


Ein im "Conrad-Verfahren" montiertes Lager, vorrangig entwickelt zur Aufnahme radialer Belastungen – tiefe Laufbahnen erlauben auch Axialkräfte in beiden Richtungen - wird oft eingesetzt in Verbindung mit weiteren Lagern.

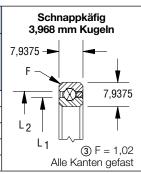
			SAA S	ERIE				Schnappkäfig 2,381 mm Kugeln
KAYDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Gewicht	4,7625 —
Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L2	statisch ²	dyn.	in kg	F
*SAA10CL0	25,400	34,925	28,956	31,369	1.290	836	0,01	
*SAA15CL0	38,100	47,625	41,656	44,069	1.779	1.001	0,02	$\begin{bmatrix} L_2 \end{bmatrix}$ $\begin{bmatrix} -\sqrt{2} & -\sqrt{2} \\ 3 \end{bmatrix}$ $F = 0.38$
*SAA17CL0	44,450	53,975	48,006	50,419	2.046	1.077	0,02	L1 Alle Kanten gefast

			SA SE	RIE			
KAYDON		Abmessun	gen in mm		Radiale Trag	zahlen in N ^①	Gewicht
Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L2	statisch ²	dyn.	in kg
*SA020CP0	50,800	63,500	55,524	58,776	3.025	1.748	0,05
*SA025CP0	63,500	76,200	68,224	71,476	3.692	1.966	0,06
*SA030CP0	76,200	88,900	80,924	84,176	4.404	2.166	0,07
*SA035CP0	88,900	101,600	93,624	96,876	5.071	2.358	0,08
*SA040CP0	101,600	114,300	106,324	109,576	5.738	2.540	0,09

			SB SE	RIE			
KAYDON		Abmessun	gen in mm		Radiale Trag	zahlen in N $^{ ext{O}}$	Gewicht
Lager	Bohrung	Außen-Ø	Ø L1	Ø L2	statisch ²	dyn.	in kg
*SB020CP0	50,800	66,675	56,667	60,782	4.137	2.567	0,07
*SB025CP0	63,500	79,375	69,367	73,482	5.071	2.865	0,09
*SB030CP0	76,200	92,075	82,067	86,182	5.961	3.145	0,11
*SB035CP0	88,900	104,775	94,767	98,882	6.850	3.412	0,12
*SB040CP0	101,600	117,475	107,467	111,582	7.784	3.670	0,14


- * Eingeschränkte Verfügbarkeit bitte Preis und Lieferzeiten erfragen.
 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
 ② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 ③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

REALI-SLIM® Edelstahllager Typ X Vierpunktlager


Ein im "Conrad-Verfahren" montiertes Lager, entwickelt für Anwendungen mit unterschiedlichen Belastungen. Die einzigartige interne Geometrie erlaubt die Aufnahme radialer Lasten, axialer Lasten in beide Richtungen sowie Momentenlasten einzeln oder in jeder Kombination. Ein einzelnes Vierpunktlager kann in vielen Anwendungen zwei Lager ersetzen.

				SAA	SEF	RIE						Schnappkäfig 2,381 mm Kugeln
		Abmessun	gen in mm				Tragzah	len ^①				4,7625
KAYDON Lager	Dahaaa	Augen Ø	Ø.	Ø.	Radi	al (N)	Axia	I (N)	Momen	t (Nm)	Gewicht in kg	F —
Lugoi	Bonrung	Außen-Ø	Ø L ₁	Ø L ₂	stat. ^②	dyn.	stat. ^②	dyn.	stat. ²	dyn.		4,7625
*SAA10XL0	25,400	34,925	28,956	31,369	1.290	1.099	3.247	1.646	19	12	0,01	
*SAA15XL0	38,100	47,625	41,656	44,069	1.779	1.317	4.448	2.046	38	21	0,02	L_2 3 F = 0,38
*SAA17XL0	44,450	53,975	48,006	50,419	2.046	1.419	5.071	2.224	50	26	0,02	L1 Alle Kanten gefast

				SA	SER	IE					
		Abmessun	gen in mm				Tragzah	llen ^①			
KAYDON Lager	Dohmina	Außen-Ø	Ø Lı	Ø L2	Radi	nt (Nm)	Gewicht in kg				
go.	Bohrung	Auben-9	W L1	W L2	stat. ^②	dyn.	stat. ^②	dyn.	stat. ²	dyn.	9
*SA020XP0	50,800	63,500	55,524	58,776	3.025	2.286	7.607	3.514	87	49	0,05
*SA025XP0	63,500	76,200	68,224	71,476	3.692	2.593	9.297	4.048	130	68	0,06
*SA030XP0	76,200	88,900	80,924	84,176	4.404	2.860	10.987	4.493	181	89	0,07
*SA035XP0	88,900	101,600	93,624	96,876	5.071	3.118	12.677	4.938	241	111	0,08
*SA040XP0	101,600	114,300	106,324	109,576	5.738	3.363	14.323	5.382	310	136	0,09

				SB	SER	IE					
		Abmessun	gen in mm				Tragzah	len ^①			
KAYDON Lager	Dahmuna	Augen Ø	Ø.	Ø.	Radi	al (N)	Axia	I (N)	Momen	t (Nm)	Gewicht in kg
Lugoi	Bohrung	Außen-Ø	Ø L ₁	Ø L ₂	stat. ²	dyn.	stat. ^②	dyn.	stat.2	dyn.	
*SB020XP0	50,800	66,675	56,667	60,782	4.137	3.372	10.409	5.027	122	74	0,07
*SB025XP0	63,500	79,375	69,367	73,482	5.071	3.772	12.633	5.738	181	101	0,09
*SB030XP0	76,200	92,075	82,067	86,182	5.961	4.150	14.902	6.405	251	131	0,11
*SB035XP0	88,900	104,775	94,767	98,882	6.850	4.511	17.170	7.073	332	164	0,12
*SB040XP0	101,600	117,475	107,467	111,582	7.784	4.853	19.439	7.651	426	199	0,14

- * Eingeschränkte Verfügbarkeit bitte Preis und Lieferzeiten erfragen.

 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

 ② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die stati-
- schen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

 ③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

REALI-SLIM MM™ Metrische Serie

1954 legte KAYDON® den Dünnringlagerstandard der Industrie basierend auf zöllige Maße fest. Das zöllige REALI-SLIM® Standardlager ist immer noch das verbreitetste Dünnringlager der Welt.

Für Anwendungen, die metrische Abmessungen wegen der Austauschbarkeit mit anderen Produkten brauchen, bieten wir die metrische REALI-SLIM MM™ Lagerserie an.

Diese Lager bieten:

- Querschnitte von 8, 13, und 20 mm
- einen großen Bohrungsdurchmesserbereich von 20 mm bis 360 mm
- viele der Vorzüge der Standard REALI-SLIM® Lager

Die REALI-SLIM MM™ Serie kann für spezielle Anwendungen mit folgenden Optionen ausgestattet werden:

- Keramikkugeln
- Spezialfetten
- Integrierten Dichtungen

Für Ihre Anforderungen wenden Sie sich an die RODRIGUEZ® Anwendungstechnik.

Wie werden REALI-SLIM MM™ Lager mit unserem Nummernsystem bezeichnet:

Standard und optional metrische REALI-SLIM® Lager sind zur eindeutigen Identifikation mit einer 9- oder 10-stelligen Teilenummer versehen. Die Positionen 1–9 identifizieren das Material, die Abmessung, den Typ, den Käfigtyp, und die Präzision. Die Position 10 (optional) identifiziert nicht-standard Lagervorspannung oder -spiel. Kundenspezifische und geschützte Lager können nicht identifiziert werden und sind mit einem 9-stelligen Zahlencode markiert.

Bild 2-10

Position	1	2	3	4	5	6	7	8	9	10
Legende	Material	Boh	rung (ı	mm)	Breite	(mm)	Тур	Käfig	Präzision	Lagerspiel
Beispiel	К	0	8	0	0	8	Х	Р	0	K

Bestellschlüssel:

- 1) K = AISI 52100 Stahl
 - S = AISI 440C Edelstahl
 - N = ENDURAKOTE® Beschichtung
- 7) = A: Schrägkugellager
 - C: Radialkugellager
 - X: Vierpunktlager

- 8) P = Geformter Standardring "snapover" Typ (Material– Messing oder nichtmetallisches Material)
 - R = Geformter Standardring, "circular pocket" Typ (Material– Messing oder nichtmetallisches Material)
- 9) 0 = Präzisionsklasse 1 (ABEC 1F) Standard
- 10) leer = Standard (Siehe Seite 90)
 - A = 0,0000 bis 0,0127 mm Lagerspiel
 - K = 0,0000 bis 0,0127 mm Vorspannung
 - L = 0,0000 bis 0,0254 mm Vorspannung
 - Z = Sonstiges Lagerspiel/ Vorspannung

REALI-SLIM MM™ Metrische Serie Lagerauswahl Typ A Schrägkugellager

	8mm SERIE												
		Abme	essungen i	n mm			Tragzah	len in N ^①			3,968 mm Kugeln		
KAYDON Lager			~ ·	<i>~</i> .	۵.	Radi	al (N)	1	ıl (N)	Gewicht in kg			
Layer	Bohrung	Außen-Ø	Ø L ₁	Ø L2	Ø L ₃	statisch ²	dyn.	statisch ²	dyn.	III NY			
K02508AR0	25	41	30,9	35,1	37,2	3.720	2.720	10.730	5.610	0,06			
K05008AR0	50	66	55,9	60,1	62,2	6.560	3.670	18.940	8.190	0,08			
K06008AR0	60	76	65,9	70,1	72,2	7.870	4.080	22.730	9.250	0,09			
K07008AR0	70	86	75,9	80,1	82,2	8.960	4.400	25.880	10.090	0,10			
K08008AR0	80	96	85,9	90,1	92,2	10.060	4.700	29.030	10.900	0,12			
K09008AR0	90	106	95,9	100,1	102,2	11.370	5.050	32.820	11.820	0,13	1 1		
K10008AR0	100	116	105,9	110,1	112,2	12.460	5.330	35.980	12.570	0,14	- → 8mm →		
K11008AR0	110	126	115,9	120,1	122,2	13.560	5.610	39.140	13.290	0,15	F		
K12008AR0	120	136	125,9	130,1	132,2	14.650	5.870	42.290	14.000	0,16	★ ★ 8m		
K13008AR0	130	146	135,9	140,1	142,2	15.960	6.180	46.080	14.820	0,17			
K14008AR0	140	156	145,9	150,1	152,2	17.060	6.430	49.230	15.490	0,18			
K15008AR0	150	166	155,9	160,1	162,2	18.150	6.670	52.390	16.150	0,20			
K16008AR0	160	176	165,9	170,1	172,2	19.460	6.960	56.180	16.910	0,20			
K17008AR0	170	186	175,9	180,1	182,1	20.550	7.200	59.330	17.540	0,21			
K18008AR0	180	196	185,9	190,1	192,1	21.650	7.420	62.490	18.160	0,22			
K19008AR0	190	206	195,9	200,1	202,1	22.960	7.690	66.280	18.890	0,23			
K20008AR0	200	216	205,9	210,1	212,1	24.050	7.910	69.440	19.480	0,23			
K25008AR0	250	266	255,9	260,1	262,1	29.740	8.970	85.850	22.440	0,28			
K30008AR0	300	316	305,9	310,1	312,1	35.640	9.990	102.890	25.320	0,33			
K32008AR0	320	336	325,9	330,1	332,1	38.050	10.390	109.830	26.450	0,36	05.00		
K34008AR0	340	356	345,9	350,1	352,1	40.230	10.730	116.140	27.450	0,38	$\Im F = 0.8$ Alle Kanten gefast		
K36008AR0	360	376	365,9	370,1	372,1	42.640	11.100	123.090	28.540	0,40	Alle Nanten gelast		

 ^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.
 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 ③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ A - REALI-SLIM MM™ Metrische Serie, Schrägkugellager

				13mm	SER	RIE					Kugeltaschenkäfig
		Abme	essungen i	n mm			Tragzah	len in N ^①			6,350 mm Kugeln
KAYDON Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L2	Ø L₃	Radia	al (N)	Axia	I (N)	Gewicht in kg	
90-	Donrung	Auben-9	ωLi	Ø L2	W L3	statisch ²	dyn.	statisch ²	dyn.	9	
*K02513AR0	25	51	34,7	41,3	44,7	6.160	5.540	17.780	10.750	0,13	
*K05013AR0	50	76	59,7	66,3	69,6	10.640	7.250	30.700	15.470	0,20	
*K06013AR0	60	86	69,7	76,3	79,6	12.320	7.820	35.550	17.060	0,22	
K07013AR0	70	96	79,7	86,3	89,6	14.560	8.600	42.010	19.060	0,25	
*K08013AR0	80	106	89,7	96,3	99,6	16.230	9.130	46.860	20.500	0,28	
*K09013AR0	90	116	99,7	106,3	109,6	17.910	9.640	51.710	21.900	0,31	
*K10013AR0	100	126	109,7	116,3	119,6	19.590	10.130	56.560	23.240	0,34	
*K11013AR0	110	136	119,7	126,3	129,6	21.270	10.610	61.410	24.550	0,37	— ► 13mm
*K12013AR0	120	146	129,7	136,3	139,6	22.950	11.080	66.250	25.830	0,39	F —
*K13013AR0	130	156	139,7	146,3	149,6	25.190	11.710	72.720	27.480	0,42	131
*K14013AR0	140	166	149,7	156,3	159,5	26.870	12.150	77.570	28.690	0,45	
*K15013AR0	150	176	159,7	166,3	169,5	28.550	12.580	82.410	29.870	0,48	
*K16013AR0	160	186	169,7	176,3	179,5	30.230	13.010	87.260	31.040	0,51	Ť
K17013AR0	170	196	179,7	186,3	189,5	31.910	13.420	92.110	32.170	0,54	
*K18013AR0	180	206	189,7	196,3	199,5	33.590	13.820	96.960	33.290	0,56	
K19013AR0	190	216	199,7	206,3	209,5	35.270	14.220	101.810	34.390	0,59	
*K20013AR0	200	226	209,7	216,3	219,4	37.500	14.760	108.270	35.830	0,62	
*K25013AR0	250	276	259,7	266,3	269,4	45.900	16.590	132.510	41.000	0,76	
*K30013AR0	300	326	309,7	316,3	319,3	54.860	18.400	158.370	46.180	0,90	
*K32013AR0	320	346	329,7	336,3	339,3	58.220	19.040	168.060	48.040	0,96	@ F 1 F
*K34013AR0	340	366	349,7	356,3	359,2	62.130	19.780	179.370	50.170	1,02	③ F = 1,5 Alle Kanten gefast
*K36013AR0	360	386	369,7	376,3	379,2	65.500	20.380	189.070	51.960	1,07	i iiio i iai itoi i golaot

	20mm SERIE											
		Abme	ssungen i	n mm			Tragzahl	len in N ^①			9,525 mm Kugeln	
KAYDON Lager	Dahmuna	Augen Ø	Ø L ₁	Ø L2	Ø L ₃	Radia	al (N)	Axia	I (N)	Gewicht in kg		
_ugo:	Bohrung	Außen-Ø	Ø L1	Ø L 2	Ø L3	statisch ²	dyn.	statisch ²	dyn.			
*K02520AR0	25	65	40,0	50,0	55	11.340	11.550	32.720	21.150	0,31		
*K05020AR0	50	90	65,0	75,0	80	18.890	14.600	54.540	29.730	0,49		
*K06020AR0	60	100	75,0	85,0	90	21.410	15.470	61.810	32.310	0,56		
*K07020AR0	70	110	85,0	95,0	100	23.930	16.330	69.080	34.800	0,62		
*K08020AR0	80	120	95,0	105,0	110	26.450	17.170	76.350	37.200	0,69	1 1	
*K09020AR0	90	130	105,0	115,0	120	30.230	18.510	87.260	40.670	0,77	→ 20mm →	
*K10020AR0	100	140	115,0	125,0	130	32.750	19.290	94.530	42.900	0,84	F- -	
*K11020AR0	110	150	125,0	135,0	140	35.270	20.050	101.810	45.070	0,91		
*K12020AR0	120	160	135,0	145,0	150	37.780	20.800	109.080	47.190	0,97		
*K13020AR0	130	170	145,0	155,0	160	40.300	21.540	116.350	49.270	1,04		
*K14020AR0	140	180	155,0	165,0	170	42.820	22.260	123.620	51.300	1,11	v	
K15020AR0	150	190	165,0	175,0	180	46.600	23.390	134.530	54.270	1,19		
K16020AR0	160	200	175,0	185,0	190	49.120	24.070	141.800	56.210	1,26		
K17020AR0	170	210	185,0	195,0	200	51.460	24.740	149.070	58.110	1,32		
K18020AR0	180	220	195,0	205,0	210	54.160	25.400	156.340	59.990	1,39		
*K19020AR0	190	230	205,0	215,0	220	56.680	26.050	163.610	61.830	1,46		
K20020AR0	200	240	215,0	225,0	230	60.450	27.060	174.520	64.550	1,54		
K25020AR0	250	290	265,0	275,0	280	74.310	30.410	214.520	74.080	1,89		
K30020AR0	300	340	315,0	325,0	330	86.910	33.170	250.880	82.220	2,23		
*K32020AR0	320	360	335,0	345,0	350	93.210	34.540	269.060	86.150	2,37	@F 45	
*K34020AR0	340	380	355,0	365,0	370	98.240	35.560	283.600	89.230	2,51	③ F = 1,5 Alle Kanten gefast	
*K36020AR0	360	400	375,0	385,0	390	104.540	36.850	301.780	93.000	2,66	, and i tall toll goldet	

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

REALI-SLIM MM™ Metrische Serie Lagerauswahl Typ C Radialkugellager

Ein im "Conrad-Verfahren" montiertes Lager, vorrangig entwickelt zur Aufnahme radialer Belastungen – tiefe Laufbahnen erlauben auch Axialkräfte in beiden Richtungen – wird oft eingesetzt in Verbindung mit weiteren Lagern.

			8mm S	ERIE				Schnappkäfig
		Abmessun	gen in mm		Tragzahl	len in N ^①		3,968 mm Kugeln
KAYDON Lager	Dahmum	Augen Ø	Ø.	Ø.	Radia	al (N)	Gewicht in kg	
Lugoi	Bohrung	Außen-Ø	Ø Lı	Ø L ₂	statisch ²	dyn.	ııı ng	
K02508CP0	25	41	30,9	35,1	3.030	2.550	0,06	
K05008CP0	50	66	55,9	60,1	5.560	3.500	0,08	
K06008CP0	60	76	65,9	70,1	6.560	3.840	0,09	
K07008CP0	70	86	75,9	80,1	7.580	4.170	0,10	
K08008CP0	80	96	85,9	90,1	8.590	4.480	0,11	
K09008CP0	90	106	95,9	100,1	9.590	4.780	0,13	
K10008CP0	100	116	105,9	110,1	10.610	5.070	0,14	→ 8mm →
K11008CP0	110	126	115,9	120,1	11.620	5.340	0,15	F — '
K12008CP0	120	136	125,9	130,1	12.620	5.610	0,16	8mm
K13008CP0	130	146	135,9	140,1	13.640	5.880	0,17	
K14008CP0	140	156	145,9	150,1	14.650	6.130	0,18	L2 †
K15008CP0	150	166	155,9	160,1	15.650	6.380	0,20	L ₁ — V—
K16008CP0	160	176	165,9	170,1	16.660	6.620	0,20	
K17008CP0	170	186	175,9	180,1	17.670	6.860	0,20	
K18008CP0	180	196	185,9	190,1	18.680	7.090	0,21	
*K19008CP0	190	206	195,9	200,1	19.440	7.250	0,21	
K20008CP0	200	216	205,9	210,1	20.450	7.480	0,22	
K25008CP0	250	266	255,9	260,1	25.500	8.530	0,28	
K30008CP0	300	316	305,9	310,1	30.550	9.490	0,35	
K32008CP0	320	336	325,9	330,1	32.570	9.850	0,39	05.00
K34008CP0	340	356	345,9	350,1	34.590	10.160	0,42	③ F = 0,8 Alle Kanten gefast
K36008CP0	360	376	365,9	370,1	36.360	10.500	0,46	7 mo ramon golast

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abellieung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ C - REALI-SLIM MM™ Metrische Serie, Radialkugellager

	13mm SERIE											
		Abmessun	igen in mm		Tragzahl	len in N ^①		6,350 mm Kuge				
KAYDON Lager	Dahmuna	A0 Ø	Ø Lı	Ø L2	Radi	al (N)	Gewicht in kg					
Lugoi	Bohrung	Außen-Ø	Ø Li	W L2	statisch ²	dyn.						
*K02513CP0	25	51	34,7	41,3	5.170	5.350	0,11					
*K05013CP0	50	76	59,7	66,3	9.050	6.970	0,18					
*K06013CP0	60	86	69,7	76,3	10.990	7.750	0,21					
K07013CP0	70	96	79,7	86,3	12.280	8.190	0,24					
*K08013CP0	80	106	89,7	96,3	13.580	8.620	0,26					
*K09013CP0	90	116	99,7	106,3	15.510	9.310	0,29]				
*K10013CP0	100	126	109,7	116,3	16.810	9.710	0,32	_ → 13mm				
*K11013CP0	110	136	119,7	126,3	18.750	10.350	0,35	F → 1 1 1				
*K12013CP0	120	146	129,7	136,3	20.040	10.730	0,38	13mi				
*K13013CP0	130	156	139,7	146,3	21.330	11.100	0,41					
*K14013CP0	140	166	149,7	156,3	23.270	11.690	0,44					
*K15013CP0	150	176	159,7	166,3	24.560	12.040	0,46					
*K16013CP0	160	186	169,7	176,3	25.860	12.390	0,49					
K17013CP0	170	196	179,7	186,3	27.800	12.940	0,52					
*K18013CP0	180	206	189,7	196,3	29.090	13.270	0,55					
K19013CP0	190	216	199,7	206,3	30.380	13.600	0,58					
*K20013CP0	200	226	209,7	216,3	32.320	14.110	0,61					
*K25013CP0	250	276	259,7	266,3	40.080	15.980	0,75					
*K30013CP0	300	326	309,7	316,3	47.190	17.540	0,89					
*K32013CP0	320	346	329,7	336,3	50.420	18.230	0,95	05.5				
*K34013CP0	340	366	349,7	356,3	53.650	18.890	1,01	③ F = 1,5 Alle Kanten gefas				
*K36013CP0	360	386	369,7	376,3	56.880	19.540	1,06	Allo Nairteir geras				

			20mm	SERIE				Schnappkäfig
		Abmessun	gen in mm		Tragzahl	en in N ^①		9,525 mm Kugeln
KAYDON Lager			- ·	-u .	Radi	al (N)	Gewicht in kg	
Layei	Bohrung	Außen-Ø	Ø Lı	Ø L ₂	statisch ²	dyn.	III NY	
*K02520CP0	25	65	40,0	50,0	10.180	11.780	0,34	
*K05020CP0	50	90	65,0	75,0	16.000	14.100	0,51	
*K06020CP0	60	100	75,0	85,0	17.450	14.520	0,58	
*K07020CP0	70	110	85,0	95,0	20.360	15.730	0,65	
*K08020CP0	80	120	95,0	105,0	21.810	16.170	0,72	
*K09020CP0	90	130	105,0	115,0	24.730	17.300	0,80	
*K10020CP0	100	140	115,0	125,0	26.180	17.730	0,86	_ → 20mm
*K11020CP0	110	150	125,0	135,0	29.090	18.800	0,94	F —,
*K12020CP0	120	160	135,0	145,0	32.000	19.820	1,01	20mm
*K13020CP0	130	170	145,0	155,0	33.450	20.230	1,08	20mm
*K14020CP0	140	180	155,0	165,0	36.360	21.210	1,15	
K15020CP0	150	190	165,0	175,0	37.810	21.610	1,20	L1 HV-11 .
K16020CP0	160	200	175,0	185,0	40.720	22.540	1,30	
K17020CP0	170	210	185,0	195,0	43.630	22.930	1,40	
K18020CP0	180	220	195,0	205,0	45.080	23.830	1,50	
*K19020CP0	190	230	205,0	215,0	48.000	24.700	1,50	
K20020CP0	200	240	215,0	225,0	49.450	25.070	1,60	
K25020CP0	250	290	265,0	275,0	61.080	28.210	2,10	
K30020CP0	300	340	315,0	325,0	72.720	31.110	2,30	
*K32020CP0	320	360	335,0	345,0	77.080	32.130	2,42	<u> </u>
*K34020CP0	340	380	355,0	365,0	81.440	33.120	2,54	③ F = 1,5 Alle Kanten gefast
*K36020CP0	360	400	375.0	385.0	85.810	34.080	2.70	Alle Nailteil gelast

^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min⁻¹ (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.
② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

REALI-SLIM MM™ Metrische Serie Lagerauswahl Typ X Vierpunktlager

Ein im "Conrad-Verfahren" montiertes Lager, entwickelt für Anwendungen mit unterschiedlichen Belastungen. Die einzigartige interne Geometrie erlaubt die Aufnahme radialer Lasten, axialer Lasten in beide Richtungen sowie Momentenlasten einzeln oder in jeder Kombination. Ein einzelnes Vierpunktlager kann in vielen Anwendungen zwei Lager ersetzen.

				8m	m SE	ERIE						Schnappkäfig
		Abmessun	gen in mn	1			Tragzahl	en in N ^①				3,968 mm Kugeln
KAYDON Lager			<i>~</i> .	<i>~</i> .	Radi	al (N)	Axia	ıl (N)	Momei	nt (Nm)	Gewicht in kg	
Layer	Bohrung	Außen-Ø	Ø Lı	Ø L2	stat. ^②	dyn.	stat. ^②	dyn.	stat. ^②	dyn.	III NY	
K02508XP0	25	41	30,9	35,1	3.340	3.310	7.580	4.690	49	40	0,04	
K05008XP0	50	66	55,9	60,1	5.550	4.600	13.890	6.660	158	98	0,07	
K06008XP0	60	76	65,9	70,1	6.560	5.060	16.410	7.450	219	127	0,09	
K07008XP0	70	86	75,9	80,1	7.570	5.490	18.940	8.190	290	158	0,10	
K08008XP0	80	96	85,9	90,1	8.590	5.910	21.460	8.900	370	191	0,11	
K09008XP0	90	106	95,9	100,1	9.590	6.310	23.990	9.590	461	228	0,13	
K10008XP0	100	116	105,9	110,1	10.600	6.700	26.510	10.250	562	266	0,14	- → 8mm
K11008XP0	110	126	115,9	120,1	11.620	7.070	29.030	10.900	672	307	0,15	F _ OIIIIII
K12008XP0	120	136	125,9	130,1	12.620	7.430	31.560	11.520	792	350	0,16	
K13008XP0	130	146	135,9	140,1	13.630	7.780	34.090	12.120	923	395	0,18	₹ Smm
K14008XP0	140	156	145,9	150,1	14.650	8.120	36.610	12.710	1.063	442	0,19	
K15008XP0	150	166	155,9	160,1	15.650	8.460	39.140	13.290	1.213	492	0,20	Ľ₁ ╙╲╜ '
K16008XP0	160	176	165,9	170,1	16.660	8.780	41.660	13.860	1.373	543	0,20	
K17008XP0	170	186	175,9	180,1	17.670	9.100	44.180	14.410	1.543	596	0,20	
K18008XP0	180	196	185,9	190,1	18.680	9.410	46.710	14.950	1.722	651	0,21	
*K19008XP0	190	206	195,9	200,1	19.440	9.630	48.600	15.360	1.888	701	0,21	
K20008XP0	200	216	205,9	210,1	20.450	9.920	51.130	15.880	2.086	759	0,22	
K25008XP0	250	266	255,9	260,1	25.500	11.330	63.750	18.400	3.226	1.075	0,28	
K30008XP0	300	316	305,9	310,1	30.550	12.610	76.380	20.760	4.614	1.429	0,35	
K32008XP0	320	336	325,9	330,1	32.570	13.100	81.430	21.660	5.238	1.580	0,39	@F 00
K34008XP0	340	356	345,9	350,1	34.590	13.500	86.480	22.550	5.859	1.728	0,42	$\Im F = 0.8$ Alle Kanten gefast
K36008XP0	360	376	365,9	370,1	36.360	13.960	90.890	23.300	6.561	1.890	0,46	, and i deriver gender

 ^{*} Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.
 ① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min-1 (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

 ⁽²⁾ Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.
 (3) F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Typ X - REALI-SLIM MM™ Metrische Serie, Vierpunktlager

	13mm SERIE												
		Abmessun	gen in mn	1			Tragzahl	en in N ^①				6,350 mm Kugeln	
KAYDON Lager			<i>α</i> .	~ ·	Radi	al (N)	Axia	I (N)	Momei	nt (Nm)	Gewicht in kg		
Layer	Bonrung	Außen-Ø	Ø Lı	Ø L2	stat. ^②	dyn.	stat. ^②	dyn.	stat. ^②	dyn.	, III NG		
*K02513XP0	25	51	34,7	41,3	6.960	6.890	12.930	8.690	96	96	0,13		
*K05013XP0	50	76	59,7	66,3	9.190	9.100	22.630	12.260	280	211	0,20		
*K06013XP0	60	86	69,7	76,3	10.990	10.140	27.470	14.360	393	272	0,23		
*K07013XP0	70	96	79,7	86,3	12.280	10.740	30.700	15.470	500	328	0,26		
*K08013XP0	80	106	89,7	96,3	13.580	11.330	33.930	16.530	619	388	0,28		
*K09013XP0	90	116	99,7	106,3	15.510	12.240	38.780	18.080	784	464	0,31		
*K10013XP0	100	126	109,7	116,3	16.810	12.790	42.010	19.060	931	532	0,34	L. I	
*K11013XP0	110	136	119,7	126,3	18.750	13.640	46.860	20.500	1.131	617	0,37	_ → 13mm	
*K12013XP0	120	146	129,7	136,3	20.060	14.150	50.100	21.440	1.307	693	0,40		
*K13013XP0	130	156	139,7	146,3	21.330	14.660	53.330	22.350	1.496	771	0,43	13mm	
*K14013XP0	140	166	149,7	156,3	23.270	15.440	58.170	23.680	1.746	869	0,46		
*K15013XP0	150	176	159,7	166,3	24.560	15.920	61.410	24.550	1.963	954	0,48		
*K16013XP0	160	186	169,7	176,3	25.860	16.390	64.640	25.410	2.193	1.043	0,51		
*K17013XP0	170	196	179,7	186,3	27.800	17.110	69.490	26.660	2.494	1.152	0,54		
*K18013XP0	180	206	189,7	196,3	29.090	17.560	72.720	27.480	2.753	1.247	0,57		
K19013XP0	190	216	199,7	206,3	30.380	18.000	75.950	28.290	3.024	1.344	0,60		
*K20013XP0	200	226	209,7	216,3	32.320	18.680	80.800	29.480	3.375	1.464	0,63		
*K25013XP0	250	276	259,7	266,3	40.080	21.190	100.190	34.030	5.168	2.050	0,77		
*K30013XP0	300	326	309,7	316,3	47.190	23.270	117.960	37.940	7.242	2.680	0,91		
*K32013XP0	320	346	329,7	336,3	50.420	24.190	126.050	39.660	8.232	2.963	0,97	05.45	
*K34013XP0	340	366	349,7	356,3	53.650	25.080	134.120	41.330	9.286	3.257	1,02	③ F = 1,5 Alle Kanten gefast	
*K36013XP0	360	386	369,7	376,3	56.880	25.940	142.200	42.980	10.403	3.560	1,08	/ iiic Naritori golast	

	Schnappkäfig 9,525 mm Kugeln											
		Abmessun	gen in mn	n			Tragzahl	en in N ^①				9,5≥5 mm Kugein
KAYDON Lager	D-1		~ ·	<i>~</i> .	Radi	al (N)	Axia	I (N)	Momei	nt (Nm)	Gewicht in ka	
Lugoi	Bonrung	Außen-Ø	Ø Lı	Ø L ₂	stat. ^②	dyn.	stat. ^②	dyn.	stat. ^②	dyn.	Kg	
*K02520XP0	25	65	40,0	50,0	15.180	15.030	25.450	17.890	225	225	0,34	
*K05020XP0	50	90	65,0	75,0	18.450	18.270	39.990	24.180	549	470	0,52	
*K06020XP0	60	100	75,0	85,0	19.060	18.870	43.630	25.620	685	556	0,59	
*K07020XP0	70	110	85,0	95,0	20.710	20.500	50.900	28.390	899	679	0,66	
*K08020XP0	80	120	95,0	105,0	21.810	21.110	54.540	29.730	1.070	777	0,73	
*K09020XP0	90	130	105,0	115,0	24.730	22.630	61.810	32.310	1.334	916	0,80	
*K10020XP0	100	140	115,0	125,0	26.180	23.230	65.450	33.570	1.540	1.026	0,87	1 1
*K11020XP0	110	150	125,0	135,0	29.090	24.660	72.720	36.010	1.854	1.179	0,94	— — 20mm
*K12020XP0	120	160	135,0	145,0	32.000	26.030	79.990	38.370	2.196	1.341	1,01	F _
*K13020XP0	130	170	145,0	155,0	33.450	26.600	83.630	39.530	2.460	1.468	1,07	→ 20mm
*K14020XP0	140	180	155,0	165,0	36.360	27.910	90.900	41.790	2.852	1.643	1,15	1 1 2011111
K15020XP0	150	190	165,0	175,0	37.810	28.450	94.530	42.900	3.152	1.779	1,22	L2 †
K16020XP0	160	200	175,0	185,0	40.720	29.700	101.800	45.070	3.594	1.967	1,30	L1
K17020XP0	170	210	185,0	195,0	43.630	30.230	109.070	47.190	3.929	2.113	1,37	
K18020XP0	180	220	195,0	205,0	45.080	31.430	112.710	48.230	4.421	2.312	1,44	
*K19020XP0	190	230	205,0	215,0	48.000	32.600	119.990	50.290	4.942	2.519	1,51	
K20020XP0	200	240	215,0	225,0	49.450	33.090	123.620	51.300	5.334	2.678	1,57	
K25020XP0	250	290	265,0	275,0	61.080	37.310	152.710	59.060	8.087	3.706	2,10	
K30020XP0	300	340	315,0	325,0	72.720	41.190	181.790	66.330	11.410	4.849	2,30	
*K32020XP0	320	360	335,0	345,0	77.080	42.550	192.700	68.970	12.850	5.323	2,44	○
*K34020XP0	340	380	355,0	365,0	81.440	43.880	203.610	71.540	14.376	5.812	2,58	③ F = 1,5 Alle Kanten gefast
*K36020XP0	360	400	375.0	385.0	85.810	45.180	214.520	74.080	15.988	6.316	2.73	, and i tailiteli gelast

Eingeschränkte Verfügbarkeit – bitte Preis und Lieferzeiten erfragen.

① Die dynamischen Tragzahlen basieren auf einer Lebensdauer "B-10 Life" von 500 Stunden bei 33 1/3 min·1 (1 Millionen Umdrehungen). Die Tabellenwerte gelten jedoch nicht für kombinierte Belastungen. Die Tragzahlen gelten nicht für die Lagerserien P, X und Y, wenden Sie sich hier bitte immer an unsere technische Abteilung.

② Bei den angegebenen statischen Tragzahlen wird davon ausgegangen daß die verwendete Welle und das umschließende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreiten, wenden Sie sich bitte immer an unsere technische Abteilung.

③ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

ULTRA-SLIM™ Dünnringlager

Die Lösung für Anwendungen in der Robotik, Inspektionsausrüstung, Satelliten, Kameras... überall dort, wo genaue Positionierung und leichte Bauteile gefordert werden.

Mit nur 2,5 mm Querschnitt sind Ultra Slim Lager in Durchmessern von 35 mm bis 170 mm verfügbar.

Diese kompakte Bauweise ermöglicht den Einsatz in kleinsten, beengten Umgebungen.

Die mit höchster Präzision gefertigten Ultra Slim Lager sind durch die Verwendung von Edelstahl

korrosionsbeständig. Für die maximale Lebensdauer in extremen Umgebungen sind Hybrid Lager mit Keramikkugeln erhältlich. Ultra Slim Lager sind als Schrägkugellager (Typ A), Radialkugellager (Typ C) und als Vierpunktlager (Typ X) lieferbar.

Hybrid Lager mit Keramikkugeln sind auf Anfrage lieferbar. Diese Konfiguration wird öfters bei Mangelschmierung, oder wenn geringer Veschleiß und/oder geringe Momentenkräfte gefordert sind, eingesetzt.

Bild 2-11
Wie werden ULTRA-SLIM™ Lager mit unserem Nummernsystem bezeichnet:

Position	1	2	3	4	5	6	7	8	9	10
Legende	Material	Boh	rung (ı	mm)	Breite	(mm)	Тур	Käfig	Präzision	Lagerspiel
Beispiel	S	1	1	0	0	3	С	S	0	К

Bestellschlüssel:

Position 1-Material

S = AISI 440C Laufbahnen und Kugeln (Standard)

Positionen 2, 3 und 4-Bohrung

Nominaler Bohrungsdurchmesser in mm. Positionen 5 und 6-Breite Nominale Lagerbreite in mm.

Position 7-Lagertyp

A: Schrägkugellager C: Radialkugellager X: Vierpunktlager

Position 8-Käfig

S = Distanzkugeln F = Vollkugelig

Position 9-Präzision

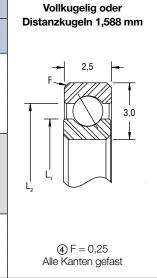
0 = KAYDON Standardpräzisionsklasse

Position 10-Lagerspiel/Vorspannung

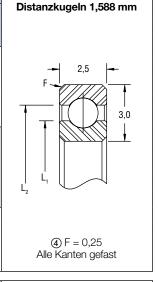
A = 0,0000 bis 0,0127 mm Lagerspiel C = 0,013 - 0,025 mm Lagerspiel E = 0.025 - 0.510 mm Lagerspiel

K = 0,0000 bis 0,0127 mm Vorspannung M = 0,013 - 0,025 mm Vorspannung

leer = standard wenn nicht spezifiziert

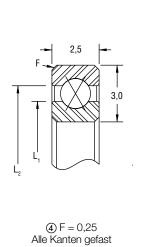

Einsatzbereiche und Anwendungsmöglichkeiten

Die Einzigartigkeit von Ultraslimlagern besteht darin, dass der extrem dünne Querschnitt signifikante Platz- und Gewichtsersparnisse ermöglicht. Dies gilt für alle leichten und mittleren Anwendungen mit langsamen oder intermittierenden Rotationen.


Die Tatsache, dass diese Lager vorwiegend in Anwendungen zum Tragen kommen, bei denen es in erster Linie um

Platz- und Gewichtsersparnis geht, setzt voraus, dass die umgebenden Bauteile ebenfalls aus Leichtbauelementen erstellt werden. Dies erlaubt unter Last höhere Lagerumfangsgeschwindigkeiten als bei Lagern mit großem Querschnitt. Aus diesem Grund basieren die Belastungsdaten nicht auf dem ABMA Standard.

		SCHR	ÄGKL	JGELL	LLAGER TYP A					
KAYDON		Abmessun	gen in mm			Tragzal	nlen	Gewicht		
Lager	Bohrung	Außen-Ø	Ø Lı	Ø L2	Radia	I (N)	Axial (N) ³	in g		
Lugo.	Domaing	rangen p	<i>2</i>	2	stat. ^①	dyn. ^②	ruai (ii)	9		
*S03503AS0	35,000	41,000	37,200	38,800	382	383	1.334	5,00		
*S06003AS0	60,000	66,000	62,200	63,800	649	552	1.112	9,00		
*S07003AS0	70,000	76,000	72,200	73,800	756	609	1.068	11,00		
*S07403AS0	74,000	80,000	76,200	77,800	799	632	1.045	11,00		
*S08003AS0	80,000	86,000	82,200	83,800	863	663	1.001	12,00		
*S09003AS0	90,000	96,000	92,200	93,800	970	716	956	13,00		
*S10003AS0	100,000	106,000	102,200	103,800	1.077	765	890	15,00		
*S11003AS0	110,000	116,000	112,200	113,800	1.183	814	867	16,00		
*S12003AS0	120,000	126,000	122,200	123,800	1.290	863	823	18,00		
*S13003AS0	130,000	136,000	132,200	133,800	1.407	912	778	19,00		
*S14003AS0	140,000	146,000	142,200	143,800	1.514	956	734	21,00		
*S15003AS0	150,000	156,000	152,200	153,800	1.621	1.001	712	22,00		
*S16003AS0	160,000	166,000	162,200	163,800	1.727	1.045	689	24,00		
*S17003AS0	170,000	176,000	172,200	173,800	1.834	1.085	667	25,00		



	F	RADIAL	KUGEL	LAGER	TYP C		
KANDON		Abmessu	ngen in mm		Tragz	ahlen	
KAYDON Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L2		al (N)	Gewicht in g
Lugoi	Domaing	Auben-9	y Li	W L2	stat. ^①	dyn. ^②	
*S03503CS0	35,000	41,000	37,200	38,800	418	418	5,00
*S06003CS0	60,000	66,000	62,200	63,800	711	605	9,00
*S07003CS0	70,000	76,000	72,200	73,800	827	667	11,00
*S07403CS0	74,000	80,000	76,200	77,800	875	689	11,00
*S08003CS0	80,000	86,000	82,200	83,800	944	725	12,00
*S09003CS0	90,000	96,000	92,200	93,800	1.062	783	13,00
*S10003CS0	100,000	106,000	102,200	103,800	1.178	841	15,00
*S11003CS0	110,000	116,000	112,200	113,800	1.295	894	16,00
*S12003CS0	120,000	126,000	122,200	123,800	1.412	943	18,00
*S13003CS0	130,000	136,000	132,200	133,800	1.540	1.001	19,00
*S14003CS0	140,000	146,000	142,200	143,800	1.658	1.050	21,00
*S15003CS0	150,000	156,000	152,200	153,800	1.774	1.099	22,00
*S16003CS0	160,000	166,000	162,200	163,800	1.891	1.143	24,00
*S17003CS0	170,000	176,000	172,200	173,800	2.006	1.192	25,00

Vollkugelig oder

	VIERPUNKTLAGER TYP X													
KAYDON		Abmessun	gen in mm			Tra	gzahlen		Couricht					
Lager	Bohrung	Außen-Ø	Ø L ₁	Ø L2		al (N)	Axial (N) ³	Moment	Gewicht in q					
	Domaing	Aubon	Ø Li	χ L2	stat. ^①	dyn. ^②	Axiai (it)	(Nm) ³	9					
*S03503XS0	35,000	41,000	37,200	38,800	711	585	1.045	7,90	5,00					
*S06003XS0	60,000	66,000	62,200	63,800	1.208	847	934	11,80	9,00					
*S07003XS0	70,000	76,000	72,200	73,800	1.407	934	890	13,00	11,00					
*S07403XS0	74,000	80,000	76,200	77,800	1.487	965	867	13,40	11,00					
*S08003XS0	80,000	86,000	82,200	83,800	1.606	1.015	845	14,00	12,00					
*S09003XS0	90,000	96,000	92,200	93,800	1.805	1.096	801	14,90	13,00					
*S10003XS0	100,000	106,000	102,200	103,800	2.003	1.177	756	15,60	15,00					
*S11003XS0	110,000	116,000	112,200	113,800	2.201	1.252	734	16,60	16,00					
*S12003XS0	120,000	126,000	122,200	123,800	2.400	1.320	689	17,00	18,00					
*S13003XS0	130,000	136,000	132,200	133,800	2.618	1.401	645	17,20	19,00					
*S14003XS0	140,000	146,000	142,200	143,800	2.818	1.470	623	17,80	21,00					
*S15003XS0	150,000	156,000	152,200	153,800	3.016	1.538	601	18,40	22,00					
*S16003XS0	160,000	166,000	162,200	163,800	3.215	1.600	578	18,90	24,00					
*S17003XS0	170,000	176,000	172,200	173,800	3.413	1.669	556	19,20	25,00					

Vollkugelig oder Distanzkugeln 1,588 mm

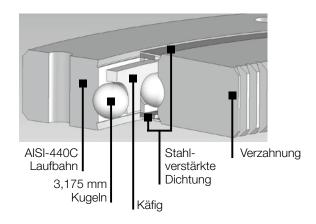
- Eingeschränkte Verfügbarkeit bitte Preis und Lieferzeiten erfragen.
- (1) Die statischen radialen Tragzahlen basieren auf den maximal zulässigen elastischen Verformungen. Um gleichmäßige Laufeigenschaften zu gewährleisten, wird ausreichende Unterstützung der Laufbahnen vorausgesetzt.
- Onterstützung der Lauban in en vorausgesetzt.

 (2) Die dynamischen Werte sind zur Lebensdauerberechnung angegeben. Diese basieren auf der Annahme, dass die verwendete Welle sowie das umgebende Gehäuse entsprechend stabil ausgelegt sind. Wenn die statischen Lasten die dynamische Tragzahl überschreitet, wenden Sie sich bitte an unsere technische Abteilung. Die Tabellenwerte gelten nicht für kombinierte Lasten.

 3 Axial- und Momentenlasten sind die Maximalbetriebswerte. Bei der Berechnung wurden die extrem dünnwandigen Lagerringe berücksichtigt. Höhere Belastungswerte können bei opti-
- maler Unterstützung der Lagerringe unter Last erreicht werden.

 ④ F = max. Radius für Welle und Gehäuse. Die Lagerkanten sind standardmäßig mit Fase 45° versehen.

Nur von KAYDON®: Die REALI-SLIM TT™ Serie die neue Generation von Miniaturdrehtischlagern


Um Gewicht und die Gesamtgröße zu reduzieren und die Designflexibilität zu verbessern – ohne Kompromisse an Lebensdauer und Leistung - wurden kundenseits Anforderungen nach einem kompakteren Drehtischlager an uns herangetragen.

Wir haben reagiert und für anspruchsvolle Anwendungen wie die Robotik, Radarantennen, maschinelle Positionierungen und Inspektionstische das erste Miniatur-Dünnringdrehtischlager entwickelt und verfügbar gemacht.... die REALI-SLIM TT™ Serie. Die Vorteile dieser neuen Serie gegenüber konventionellen Drehtischlagern sind:

- Signifikant kleinere Abmessungen für größere Designvielfalt und Gewichtseinsparungen;
- Höhere Genauigkeit Vertiefte radiale Laufbahnen erhöhen die Steifigkeit und optionale Vorspannung oder Lagerspiel helfen, die Anforderungen an Momente und Kippsteifigkeit zu erreichen;
- Leicht einzusetzen Schnelle Installation und Austauschbarkeit:

- Kundenspezifische Konfigurationen, um den Spezifikationen Ihrer Anwendung gerecht zu werden – viele Antriebsmöglichkeiten, Zahnrad/Riemen, Montagebohrungen; und
- Entwickelt für härteste Einsatzbedingungen AISI-440C Edelstahllaufbahnen, stahlverstärkte Dichtungen.

Bild 2-12

Die Konfigurationen und Spezifikationen für kompaktere, präzisere Drehtischlager

Beispiel Bestellschlüssel

T 01 - 00225 E A C

T = Vierpunkt Radialkugellager **01** = Kugel-Ø in (1/8) Zoll

00225 = Laufkreis-Ø

in Zoll x 100

└ Verzahnung

Innere Befestigungsbohrungen

 $\mathbf{E} = \text{Außenverzahnung} \quad \mathbf{A} = \text{Durchgangsbohrungen}$ N = Innenverzahnung B = Gewindebohrungen

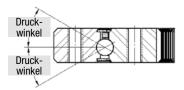
P = keine Verzahnung C = Senkbohrungen

Äußere Befestigungsbohrungen

A = Durchgangsbohrungen B = Gewindebohrungen

C = Senkbohrungen

Die Montagebohrungen haben Ø 3,45 mm Durchgangsbohrungen, Gewindebohrungen oder Senkkopfbohrungen. Die Verzahnung hat 20° Eingriffswinkel mit Modul M 0,5.


Vierpunktlager (REALI-SLIM TT™ Serie)

Lager sind oft darauf ausgelegt, entweder radiale oder axiale Lasten aufzunehemn. Die einzigartige Eigenschaft der KAYDON® REALI-SLIM® TT™ Vierpunktlagerserie ist, dass durch das unverwechselbare "Spitzbogenprofil" des Innen- und Außenrings ein einzelnes Lager drei Arten von Belastungen (radiale, axiale und Momentenlasten) gleichzeitig aufnehmen kann. Das macht das Lager zur ersten Wahl für zahlreiche Anwendungen, da ein einzelnes Vierpunktlager oft zwei Lager ersetzen kann und somit für ein einfacheres Design sorgt.

Für Anwendungen, die eine höhere Steifigkeit oder kein Lagerspiel benötigen, können REALI-SLIM TT™ Lager auch mit interner Vorspannung geliefert werden. Dies wird erreicht, indem man Kugeln mit einem größeren Durchmesser verwendet als eigentlich Platz zwischen den Laufbahnen vorhanden wäre. Die Kugeln und Laufbahnen erfahren dadurch im unbelasteten Zustand eine elastische Verformung.

Bild 2-13

REALI-SLIM TT™ Serie

Vierpunktlager (REALI-SLIM TT™ Serie)

				Tragzahlen				
Teilenummer Grundlager	Radi	al (N)	Axia	al (N)	Momei	nt (Nm)	Statisches	Gewicht (kg)
	statisch	dynamisch	statisch	dynamisch	statisch	dynamisch	Moment (Nm)	(3,
T01-00225	3.025	2.313	7.607	3.514	87	50	0,384	0,16
T01-00275	3.692	2.580	9.297	4.048	130	68	0,497	0,20
T01-00325	4.404	2.847	10.987	4.493	181	88	0,621	0,23
T01-00375	5.071	3.114	12.677	4.938	241	111	0,734	0,27
T01-00425	5.738	3.336	14.323	5.382	310	136	0,836	0,30
T01-00450	6.094	3.470	15.168	5.605	347	149	0,893	0,32
T01-00475	6.405	3.603	16.014	5.827	386	163	0,960	0,34
T01-00500	6.761	3.692	16.859	6.005	428	176	1,017	0,35
T01-00525	7.073	3.826	17.704	6.228	472	191	1,073	0,37
T01-00575	7.784	4.048	19.394	6.583	567	220	1,175	0,40
T01-00625	8.452	4.226	21.085	6.984	670	252	1,277	0,44
T01-00675	9.119	4.448	22.775	7.340	781	286	1,378	0,48

Das Moment ist mit einer leichten Vorspannung und Dichtung gerechnet

Bemerkung:

REALI-SLIM TT™ werden speziell für Ihre Anwendung produziert. Kontaktieren Sie RODRIGUEZ® bezüglich Lieferzeiten.

Unverzahnte Lager

Tailanuman mit				Abmessun	igen in mm			
Teilenummer mit Durchgangsbohrungen	Bohrung	Außen-Ø	Außen-Ø Innenring	Außen-Ø Außenring	Innerer Lochkreis-Ø	Anzahl Bohrungen	Äußerer Lochkreis-Ø	Anzahl Bohrungen
T01-00225PAA	38,100	76,200	54,559	59,842	46,050	6	68,275	8
T01-00275PAA	50,800	88,900	67,259	72,542	58,750	8	80,975	10
T01-00325PAA	63,500	101,600	79,959	85,242	71,450	9	93,675	12
T01-00375PAA	76,200	114,300	92,659	97,942	84,150	10	106,375	14
T01-00425PAA	88,900	127,000	105,359	110,642	96,850	12	119,075	15
T01-00450PAA	95,250	133,350	111,709	116,992	103,200	12	125,425	16
T01-00475PAA	101,600	139,700	118,059	123,342	109,550	14	131,775	16
T01-00500PAA	107,950	146,050	124,409	129,692	115,900	14	138,125	18
T01-00525PAA	114,300	152,400	130,759	136,042	122,250	15	144,475	18
T01-00575PAA	127,000	165,100	143,459	148,742	134,950	16	157,175	20
T01-00625PAA	139,700	177,800	156,159	161,442	147,650	18	169,875	22
T01-00675PAA	152,400	190,500	168,859	174,142	160,350	20	182,575	22

Außenverzahnte Lager

Teilenummer mit	Abmessungen in mm												
Durchgangsbohrungen	Bohrung	Kopfkreis-Ø	Außen-Ø Innenring	Innen-Ø Außenring	Innerer Lochkreis-Ø	Anzahl Bohrungen	Äußerer Lochkreis-Ø	Anzahl Bohrungen	Teilkreis-Ø	Anzahl Zähne			
T01-00225EAA	38,100	78,181	54,559	59,842	46,050	6	68,275	8	77,394	195			
T01-00275EAA	50,800	90,881	67,259	72,542	58,750	8	80,975	10	90,094	227			
T01-00325EAA	63,500	103,581	79,959	85,242	71,450	9	93,675	12	102,794	259			
T01-00375EAA	76,200	116,281	92,659	97,942	84,150	10	106,375	14	115,494	291			
T01-00425EAA	88,900	128,981	105,359	110,642	96,850	12	119,075	15	128,194	323			
T01-00450EAA	95,250	135,331	111,709	116,992	103,200	12	125,425	16	134,544	339			
T01-00475EAA	101,600	141,681	118,059	123,342	109,550	14	131,775	16	140,894	355			
T01-00500EAA	107,950	148,031	124,409	129,692	115,900	14	138,125	18	147,244	371			
T01-00525EAA	114,300	154,381	130,759	136,042	122,250	15	144,475	18	153,594	387			
T01-00575EAA	127,000	167,081	143,459	148,742	134,950	16	157,175	20	166,294	419			
T01-00625EAA	139,700	179,781	156,159	161,442	147,650	18	169,875	22	178,994	451			
T01-00675EAA	152,400	192,481	168,859	174,142	160,350	20	182,575	22	191,694	483			

REALI-SLIM TT™ Miniaturdrehtischlager

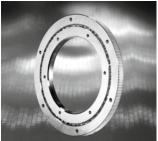
Innenverzahnte Lager

Teilenummer mit	Abmessungen in mm												
Durchgangsbohrungen	Innen-Ø	Außen-Ø	Außen-Ø Innenring	Innen-Ø Außenring	Innerer Lochkreis-Ø	Anzahl Bohrungen	Äußerer Lochkreis-Ø	Anzahl Bohrungen	Teilkreis-Ø	Anzahl Zähne			
T01-00225NAA	36,119	76,200	54,559	59,842	46,050	6	68,275	8	36,906	93			
T01-00275NAA	48,819	88,900	67,259	72,542	58,750	8	80,975	10	49,606	125			
T01-00325NAA	61,519	101,600	79,959	85,242	71,450	9	93,675	12	62,306	157			
T01-00375NAA	74,219	114,300	92,659	97,942	84,150	10	106,375	14	75,006	189			
T01-00425NAA	86,919	127,000	105,359	110,642	96,850	12	119,075	15	87,706	221			
T01-00450NAA	93,269	133,350	111,709	116,992	103,200	12	125,425	16	94,056	237			
T01-00475NAA	99,619	139,700	118,059	123,342	109,550	14	131,775	16	100,406	253			
T01-00500NAA	105,969	146,050	124,409	129,692	115,900	14	138,125	18	106,756	269			
T01-00525NAA	112,319	152,400	130,759	136,042	122,250	15	144,475	18	113,106	285			
T01-00575NAA	125,019	165,100	143,459	148,742	134,950	16	157,175	20	125,806	317			
T01-00625NAA	137,719	177,800	156,159	161,442	147,650	18	169,875	22	138,506	349			
T01-00675NAA	150,419	190,500	168,859	174,142	160,350	20	182,575	22	151,206	381			

Die Leistungsmerkmale und Auswahlmöglichkeiten

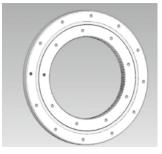
Kundenspezifische REALI-SLIM TT™ Lager sind bewährte einreihige Vierpunktlager, mit dem unverwechselbaren "Spitzbogenprofil" des Innen- und Außenrings sowie einem Messingkäfig für reibungsarmes Laufmoment. Die Lager sind geeignet für radiale, axiale und Momentenlasten, befettet und sofort einsatzbereit. Montieren Sie das Lager einfach auf die Montagefläche und ziehen die Schrauben an! Die Lager sind optional verfügbar mit Innen- oder Außenverzahnung zum einfachen Antrieb oder als unverzahnte Version.

Verzahnte Versionen sind mit Modul M 0,5 und einem 20° Eingriffswinkel ausgestattet und bieten eine Verzahnungsgenauigkeit bis zu DIN 3965 Klasse 5, bei geringem Flankenspiel. Die integrierten "low-torque" Dichtungen


bestehen aus robusten, zuverlässigen, stahlverstärkten NBR-Elastomeren.

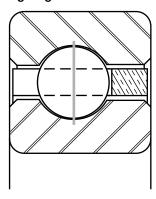
Die Montagebohrungen haben Ø 3,45 mm Durchgangsbohrungen, Gewindebohrungen oder Senkkopfbohrungen. Alle Lagervarianten haben zur einfacheren Montage eine Zentrierung.

Die Lager sind gereinigt und werden in einem Klasse 10.000 Reinraum verpackt. Die Reinraumklasse 100 ist auf Wunsch ebenfalls verfügbar.


Unverzahnt mit Durchgangsbohrungen

Außenverzahnt mit Montagebohrungen für Zylinderkopfschrauben

Außenverzahnt mit Senkkopfbohrungen


Innenverzahnt mit Montagebohrungen für Zylinderkopfschrauben

Anwendungstechnik

Lagerauswahl	66
Tragzahlen-, Lebensdauer- und Lastanalyse von REALI-SLIM® Kugellagern	71
Montage	75
Toleranzklassen und empfohlene Passungen für REALI-SLIM® Kugellager in Standardanwendungen	80
Toleranzklassen und empfohlene Passungen für ENDURA-SLIM® Kugellager	85
Toleranzklassen und empfohlenen Passungen für REALI-SLIM MM™ Lager Metrische Serie	90
Toleranzklassen und empfohlene Passungen für ULTRA-SLIM™ Lager	91

Lagerauswahl

Typ C: Radialkugellager

Das Radialkugellager Typ C ist ein einreihiges Rillenkugellager mit besonders tiefen Laufrillen in beiden Ringen (Rillentiefe = 25% des Kugeldurchmessers). In der Regel wird dieses Lager zusammengebaut, indem der innere Laufring gegenüber dem äußeren exzentrisch verschoben wird, so daß etwa die Hälfte eines vollen Kugelsatzes eingebracht werden kann. Danach werden die Ringe in ihre konzentrische Lage verschoben und die Kugeln gleichmäßig auf den Umfang verteilt, so daß der Käfig montiert werden kann. Diese Art des Zusammenbaus wird im allgemeinen als "Conrad-Verfahren" bezeichnet.

Eine andere Art des Zusammenbaus besteht darin, die Kugeln durch ein "Fülloch" - eine stirnseitig eingebrachte Nut in einem oder beiden Lagerringen einzufüllen. Nach diesem Verfahren kann das Lager vollkugelig befüllt werden, was eine Erhöhung der Tragzahl ergibt, allerdings wie bei der Käfigauswahl des Lagers bereits beschrieben wurde, Beschränkungen im Hinblick auf die Betriebsbedingungen.

Mit geringer Radialluft zeigen die Lager des Typs C das beste Betriebsverhalten. Bei der Festlegung der Radialluft für die von uns gelieferten Standardlager wurden folgende Punkte berücksichtigt:

- Presssitz zwischen Lagerringen und Einbauteilen;
- Ausdehnung bzw. Schrumpfung der Laufringe durch Temperaturunterschiede;
- Fluchtungsfehler zwischen Welle und Gehäuse sowie weitere Faktoren, die entsprechende Lagerspieleinstellungen benötigen.

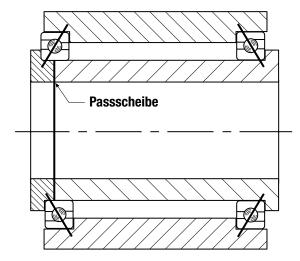
Das Radiallager Typ C ist so ausgelegt, dass bei reiner Radiallast ohne Axiallast die Berührungspunkte von Kugel und Laufbahn in der radialen Ebene durch den Kugelmittelpunkt liegen. Gewünschtes Lagerspiel oder Vorspannung kann für die entsprechenden Betriebsbedingungen eingestellt werden.

Das Lager des Typs C ohne Füllnut ist zwar hauptsächlich für die Aufnahme von Radiallasten ausgelegt, kann jedoch auch Axiallasten in beiden Richtungen aufnehmen. Diese axiale Tragfähigkeit hängt von der vorhandenen Lagerluft nach dem Einbau ab. Durch diese Lagerluft können die Kugeln unter axialer Belastung die Laufbahnen in einem bestimmten Winkel berühren und dieser Belastung einen

Widerstand entgegensetzten. Beim Fülllochlager werden bei axialer Belastung die Kugellaufflächen durch die Füllnuten unterbrochen, wodurch sich die dynamische axiale Tragfähigkeit reduziert. Deshalb ist die Drehzahl des Fülllochlagers bei axialer Belastung begrenzt.

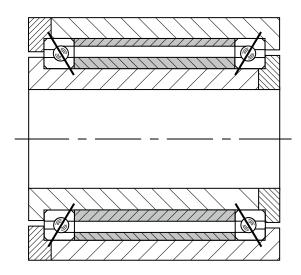
Wird die Radialluft über den normalen Wert erhöht, ist beim Lager des Typs C unter Axialbelastung ein größerer Druckwinkel und somit eine höhere axiale Tragfähigkeit möglich. In diesem Fall ist es vorteilhaft, das Lager gegen ein weiteres ähnlicher Bauweise anzustellen, um die axiale Bewegung unter der Einwirkung richtungswechselnder Kräfte zu reduzieren. Auf diese Weise eingesetzt ist das Lager eigentlich eher ein Schrägkugellager als ein Radialkugellager.

Typ A: Schrägkugellager



Das Schrägkugellager Typ A unterscheidet sich vom Typ C durch ausreichend viel Radialspiel, um einen stabilen Druckwinkel zur Aufnahme axialer Lasten zu bilden. Dieser Druckwinkel beträgt beim Standardlager 30°. Wie bei Typ C werden auch hier extra tiefe Kugelrillen (25% des Kugeldurchmessers) verwendet. Ein wesentliches Merkmal des Typs A ist die Art des Zusammenbaus. Eine Laufbahnschulter - in der Regel die Äußere - wird zurückgeschliffen, so daß mit Hilfe einer Temperaturdifferenz zwischen den beiden Ringen der Außenring über den Innenring, die Kugeln und den Käfig gezogen werden kann. Auf diese Weise entsteht ein selbsthaltendes Lager, das größere Radiallasten aufnehmen kann plus einer beträchtlichen Axialkraft in einer Richtung. Unter Einwirkung einer Axialkraft stehen die Stirnflächen von Innen- und Außenring annähernd bündig und minimieren die Justierungseinstellungen zur Vorspannung.

Durch diese Art des Zusammenbaus ist es möglich, ohne Füllnuten einen größeren Kugelsatz als beim Typ C zu verwenden, wodurch das Lager Typ A in Verbindung mit dem großen Druckwinkel seine höhere axiale Tragfähigkeit erhält


Wegen seiner einseitig gerichteten (uni-direktionalen) axialen Tragfähigkeit und wegen des größeren internen Lagerspiels sollte dieses Lager gegen ein weiters Lager montiert werden, so daß eine Axialkraft vorhanden ist, um den Druckwinkel aufrecht zu erhalten und die Axialbewegung unter richtungswechselnden Druckbelastungen zu minimieren.

Montage in "O"-Anordnung ("back to back") Bild 3-1

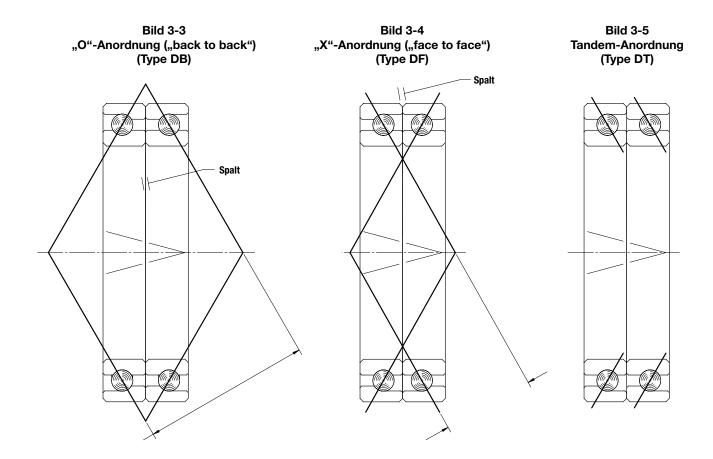
Typische Einbausituationen von Lagern des Typs A sind in den Bildern 3-1 und 3-2 zu sehen. In Bild 3-1, sind die Lager in der Weise montiert, dass sich die Kontaktlinien außerhalb des Lagers treffen. Dies wird üblicherweise als "O" Anordnung ("back to back") bezeichnet. Bei diesem Beispiel sind die Lager über die Innenringe durch Passbleche unter den Klemmringen einstellbar. Die Dicke der Passbleche sollte anfangs so gewählt sein, dass eine Axialbewegung der Welle relativ zum Gehäuse möglich ist. Das gesamte Axialspiel kann dann gemessen werden, und die Dicke der Passbleche um den Wert des Axialspiels plus dem Wert der gewünschten Vorspannung reduziert werden. Wenn zwei Lager in dem Maße zueinander verspannt sind, dass das gesamte Lagerspiel herausgenommen ist und eine elastische Verformung zwischen Kugeln und Laufbahnen entsteht, spricht man von "Vorspannung".

Montage in "X"-Anordnung ("face to face") Bild 3-2

In Bild 3-2, sind die Lager in "X" Anordnung ("face to face") montiert, wobei die Kontaktlinien sich innerhalb des Lagers treffen. Distanzringe werden zwischen den Innenund den Außenringen der Lager eingesetzt, wobei die Justierung über unterschiedlich lange Distanzringe möglich ist. Normalerweise werden die Distanzringe jedoch gleich lang hergestellt, und die Lager werden als angepasstes Lagerpaar mit der festgelegten Vorspannung gefertigt. Wenn bei dieser Anordnung der Distanzring am Außenring entfernt wird, können die Lager durch Verwendung von Passblechen unter dem äußeren Klemmring eingestellt werden.

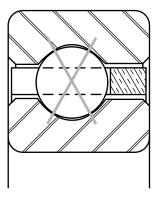
Gepaarte Lager

Wenn die Lager direkt aneinander bzw mit gepaarten Distanzringen am Innen- und Außenring eingebaut werden sollen, werden die Typ A Lager – direkt ab Werk – als passendes Lagerpaar geliefert. Auf Wunsch liefern wir zusätzlich die Distanzringe als Set. Die in den Bildern 3-3, 3-4, und 3-5 gezeigten Anordnungen werden als Lagerpaare – "O"-Anordnung ("back to back"), "X"-Anordnung ("face to face") beziehungsweise als Tandemanordnung bezeichnet. Sets von drei, vier oder mehr Lagern können in Anwendungen, bei denen zusätzliche Kapazitäten gefordert sind, oder wo der Platz für radial größere Lager nicht ausreicht, eingesetzt werden.

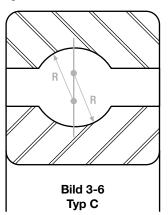

Die Lager eines Satzes werden mit engen Toleranzen bezüglich Bohrung und Außendurchmesser sowie radialer und axialer Rundlaufgenauigkeit aufeinander abgestimmt. Um für den Einbau die richtige Position der nebeneinanderliegenden Lagerringe anzugeben, ist jeder Satz mit einem über den Bohrungen und Außendurchmessern verlaufenden "V" markiert (Bild 3-5).

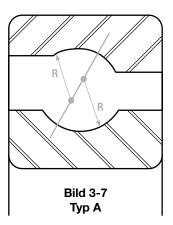
Die in den Bildern 3-3 und 3-4 gezeigten Paare werden in der Regel mit zurückgeschliffenen Stirnseiten geliefert, damit ein Spalt zwischen den Innenringen (Bild 3-3) bzw. zwischen den Außenringen des Lagerpaars (Bild 3-4) entsteht. Nach dem Einbau und axialer Klemmung ist der Spalt geschlossen, so dass sich eine interne Vorspannung ergibt.

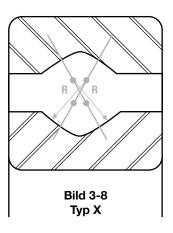
• Die "O-Anordnung" bietet gemäß den Bildern 3-1 und


- 3-3 eine größere Steifigkeit unter Momentenlast und sollte angewendet werden, wenn der Abstand zwischen den Einzellagern klein ist oder wenn ein einzelnes Paar nebeneinanderliegender Lager eingesetzt wird.
- Die "X-Anordnung" andererseits bietet eine größere Toleranz gegenüber Fluchtungsfehlern zwischen Welle und Gehäuse und sollte in Betracht gezogen werden, wenn mehrere Lager auf einer Welle sitzen. Werden Einzellager in "X-Anordnung" montiert, so ist ein ausreichender Abstand vorzusehen, damit Momentenlasten aufgenommen werden können. Ein Lagerpaar in "X-Anordnung" kann in Verbindung mit einem weiteren Lager als "Festlos-Lagerung" montiert werden, wobei das Lagerpaar als Festlager fungiert. (Siehe Kapitel 3, Montage)
- Tandem-Lagersätze nehmen Axialkräfte nur in einer Richtung auf und müssen daher gegen ein zweites Lager bzw. einen Lagersatz angestellt werden.

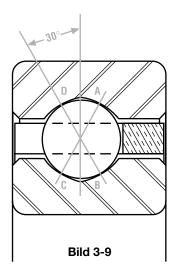
Die radiale Tragfähigkeit eines abgestimmten Lagersatzes ergibt sich aus der radialen Tragzahl des Einzellagers gemäß Katalog multipliziert mit N^{0,7}, wobei N die Anzahl der Lager im Lagersatz bezeichnet. Die axiale Tragfähigkeit errechnet sich aus der axialen Tragzahl des Einzellagers entsprechend obiger Formel.


Wenn nicht speziell gefordert, sind die Außenseiten der Lager nicht zusätzlich geschliffen. Falls dies jedoch für Vorspannungszwecke benötigt wird, sollten komplett geschliffenen Lager in Erwägung gezogen werden. Bei universal geschliffenen Lagern werden sowohl Innen- als auch Außenringe unter einer spezifizierten Prüflast angepasst, um die Vorspannung zu kontrollieren sowie Flexibilität bei der Montage zu gewährleisten.


Typ X-Vierpunktlager

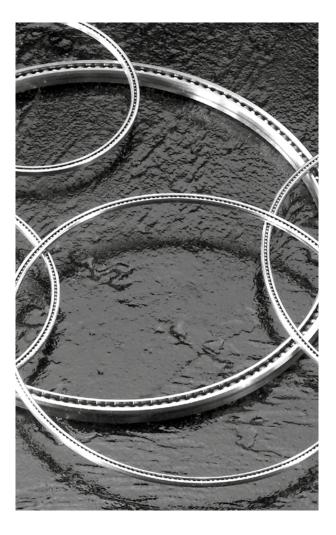


Das Vierpunktlager Typ X unterscheidet sich von den Typen A und C in der Profilierung der Kugellaufrillen. Beim Typ C liegen die Mittelpunkte der beiden Radien in der Linie durch die Kugelmittelpunkte (Bild 3-6). Beim Typ A liegen die Mittelpunkte der Rillenradien unter axialer Belastung außermittig um den gleichen Betrag versetzt neben der Linie durch die Kugelmittelpunkte (Bild 3-7). Beim Typ X hat die Rille jeder Laufbahn zwei Radien, deren Mittelpunkte außermittig der Linie durch die Kugelmittelpunkte liegen (Bild 3-8). Diese Bauweise verleiht dem Lager Typ X sein unverwechselbares "Spitzbogenprofil" (oder "Gothisches Profil"), das vier Berührungspunkte zwischen einer Kugel und den Laufbahnen ermöglicht.


Die Lager Typ X werden nach den für Typ C beschriebenen Methoden zusammengebaut, d.h. entweder nach dem "Conrad"- oder nach dem "Füllnut"-Verfahren. Da durch die Unterbrechung der Kugellaufbahn beim "Füllnut"-Lager sowohl die dynamische radiale Tragfähigkeit als auch die dynamische axiale Tragfähigkeit beeinträchtigt werden, muß die Drehzahl begrenzt werden. Die Rillentiefe ist bei den Typen X, A und C gleich (25% des Kugeldurchmessers). Durch die tiefe Rille in Verbindung mit der Vierpunkt-Berührungsgeometrie kann dieses Lager jede Kombination von radialer , axialer und Momentenbelastung aufnehmen. Die Art der Lastaufnahme ist hier ähnlich wie bei einem Lagerpaar des Typs A, welches in "O-Anordnung" als Doppellager angeordnet ist.

Entsprechend Bild 3-9 geht eine von rechts nach links auf den Innenring einwirkende Axialkraft bei Punkt B vom Ring auf die Kugel über. Sie überträgt sich über die Kugel auf Punkt D, wo sie auf den Außenring und die umgebende Konstruktion übergeht. Die Wirkungsgerade BD bildet mit der radialen Mittellinie des Lagers einen Winkel von nominell 30°. Wegen der elastischen Verformung der Kugel und der Laufrillen in Richtung der Lastübertragungsgeraden wird die Kugel an den Punkten A und C entlastet, so daß eine leichte Drehung um eine senkrecht zur Geraden BD verlaufende Achse erfolgen kann. Wirkt auf den Innenring eine Axialkraft von rechts nach links, so erfolgt die Lastübertragung in entsprechender Weise.

Momente oder Kipplasten


Eine Momentenlast (Kippmoment) entspricht zwei Axial-kräften, die an diametral gegenüberliegenden Seiten des Lagers in entgegengesetzter Richtung wirken. Bei einer Momentenlast überträgt sich die Kraft auf einer Seite des Lagers von Punkt B auf D, wodurch die Punkte A und C entlastet werden.

Eine Radiallast wird in gleicher Weise über die Berührungsgeraden CA und BD aufgenommen. Bei kombinierter Lastaufnahme verläuft die Kraftaufnahme entlang beider Berührungsgeraden, wobei die Stärke jeder Gegenkraft abhängig vom Verhältnis der Einzelbelastung ist.

Aufgrund der Fähigkeit Radial-, Axial- und Momentenlasten in jeder Kombination aufzunehmen, kann das Lager Typ X häufig zwei Lager ersetzen – ein Schrägkugellagerpaar, ein Kegelrollenlagerpaar oder eine Kombination aus Axial- und Radiallager (Kugel- oder Rollenlager).

Wie das Lager Typ C wird auch der Typ X in der Regel mit Radialspiel geliefert. Bei letzterem sind der nominelle Druckwinkel und die axiale Tragfähigkeit jedoch nicht von diesem Spiel abhängig; im Gegenteil: Bei starker Axial-und Momentenlast muß das Spiel möglichst klein gehalten werden, damit der Druckwinkel nicht zu groß wird. Für viele Anwendungen, die eine größere Steifigkeit erfordern, werden Lager des Typs X mit interner Vorspannung geliefert. Diese entsteht durch Verwendung von Kugeln, deren Durchmesser größer ist als der Abstand zwischen den Laufbahnen. In diesem Fall weisen die Kugeln und die Laufbahnen ohne Einwirkung äußerer Belastungskräfte eine gewisse elastische Verformung auf.

Bemerkung: Typ X Lager sollten einzeln verwendet werden. Der Einsatz von zwei Typ X Lagern auf einer Welle kann unbestimmte Laufmomente bewirken.

Tragzahlen-, Lebensdauer- und Lastanalyse von REALI-SLIM® Kugellagern

Erhöhte Tragzahlen

Mit Herausgabe des Katalogs 2009 hat sich die Methode zur Berechnung der dynamischen Tragzahlen bei REALI-SLIM® Lagern geändert. Die Werte bei radialen und Momentlasten der meisten REALI-SLIM® Lager wurden erhöht.

Die höheren Werte basieren auf tatsächlichen Testergebnissen aus über fünf Jahren. Die Änderung wird auch durch modernere Lebensdauerberechnungstheorien unterstützt. Diese Werte sind in Übereinstimmung mit den ABMA Std. 9 und ISO-281 Berechnungsmethoden, bei denen die korrekten Annahmen zugrunde gelegt werden. Die erhöhten Daten gelten für standard Lagerspiel. Bei den neuen Werten wird davon ausgegangen, dass nach der Montage ein ausreichendes Lagerspiel vorhanden ist.

Die größte Erhöhung ergibt sich bei den Radiallasten der Vierpunktlager (X-Typ). Bei der alten Berechnungsmethode wurden die gleichen Belastungsdaten wie für die Radialkugellager (C-Typ) angegeben. Jedoch werden bei dieser Art von Lager die Kräfte auf zwei Kontaktreihen beider Laufbahnen verteilt. Dies führt, wie Tests ergaben, zu geringerem Kontaktstress und einer längeren Lebensdauer.

Lebensdauer

Die dynamischen Belastungsdaten in diesem Katalog basieren auf tatsächlichen Daten aus Lebensdauertests. Die Werte basieren auf einer nominellen Lebensdauer von $L_{10} = 1.000.000$ Umdrehungen. Dies ist der Industriestandard zur einheitlichen Berechnung. Es ist nicht ratsam, diese dynamischen Lasten in tatsächlichen Anwendungen zu Grunde zu legen. Konstante Drehzahlen unter diesen Bedingungen würden keine zufriedenstellenden Lebensdauerwerte ergeben.

Unter L₁₀ Lebensdauer wird die Lebensdauer verstanden, die 90% einer representativen Gruppe gleicher Lager erreicht oder überschreitet, bevor Ermüdungserscheinungen der Oberfläche auftreten. Die Lebensdauer der verbleibenden 10% ist nicht vorhersagbar. Die Lebensdauer, die 50% der Lager erreichen oder überschreiten, beträgt ca. 5 mal die L₁₀ Lebensdauer. Dies wird L₅₀ oder median life genannt.

Es gibt keine signifikannten Unterschiede der dynamischen Lastdaten zwischen den Innen- und Außenringen. Dies entsteht durch das geringe Verhältnis zwischen Kugeldurchmesser und Laufkreis bei den REALI-SLIM® Lagern.

In diesem Katalog sind statische Belastungsdaten angegeben. Die tatsächlichen statischen Belastungen, denen REALI-SLIM® Lager standhalten können, sind abhängig von der Steifigkeit durch die Welle und das Gehäuse.

Die angegebenen Belastungsdaten erlauben dem Anwender schnell die L₁₀ Lebensdauer für einen eindimensionalen Belastungsfall abzuschätzen. Die Lebensdauer kann mit einer der folgenden Gleichungen eingeschätzt werden:

$$L_{10} = \left(\frac{C}{P}\right)^3 \bullet 1.000.000 \text{ Umdrehungen}$$

wobei: L₁₀ = Lebensdauer in Umdrehungen

C = Dynamischer Wert

P = Auftretende Last (effektiv)

oder

um die Lebensdauer in Stunden bei bekannter Drehzahl zu errechnen, kann obige Formel wie folgt abgeändert werden:

$$L_h = \left(\frac{C}{P}\right)^3 \bullet \left(\frac{16,667}{S}\right)$$
 Stunden

wobei: $L_h = L_{10}$ Lebensdauer in Stunden S = Umdrehungen pro Minute

Für viele Belastungsfälle und Sonderanwendungen werden die Berechnungen komplizierter. In diesen Fällen wenden Sie sich an die RODRIGUEZ® Anwendungstechnik.

Es sollte beachtet werden, dass die in diesem Katalog genannten Werte für Berechnungszwecke bestens geeignet sind. Das Ergebnis der Lebensdauerberechnung gilt nur für den angenommenen individuellen Lastfall und die entsprechende Auslegung. Da selten genaue axiale oder Momentenlasten bekannt sind, werden diese normalerweise zur Lebensdauerberechnung nicht herangezogen.

Belastungsanalyse

Vorausgegangene Katalog-Versionen haben vereinfacht die Lager-Kräfte von einem Freikörperbild auf das Lagersystem übertragen und damit die 4-Reaktionen berechnet. Normalerweise nutzt man zu deren Ermittlung 3 Gleichungen (Radial- u Axialkräfte + Moment), wobei eine dieser Reaktionen auf Null gesetzt wird. Sind alle verbleibenden Reaktionen des Systems ermittelt, kann die Lebensdauer des einzelnen Lagers bestimmt werden.

Diese Methode birgt folgende Nachteile:

- Das Ergebnis ist eine zu geringe theoretische Lagerlebensdauer bei vorwiegend axialer Belastung.
- Der tatsächliche interne Lageraufbau fließt nicht in die Lebensdauerberechnung mit ein.
- Die Belastung auf das Lager wird als gleichmäßig, rein radial und homogen verteilt, ohne Berücksichtigung ihrer Herkunft angenommen.

Tragzahlen-, Lebensdauer- und Lastanalyse von REALI-SLIM® Kugellagern (Fortsetzung)

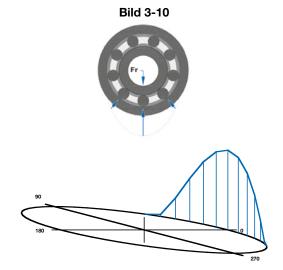
Moderne Computer und Software erlauben heute komplizierte und genaue Berechnungsmethoden zur Lebensdauerbestimmung. Hier sind die Ergebnisse dieses Prozesses illustriert. Die tatsächlichen Lagerbelastungen werden zugrunde gelegt, und die resultierende Last auf jede einzelne Kugel des Lagers wird bestimmt. Mit diesen Daten kann der statische Sicherheitsfaktor sowie die dynamische L₁₀ Lebensdauer bestimmt werden.

Zum besseren Verständnis sollte Folgendes in Betracht gezogen werden:

Überwiegende Radialbelastung

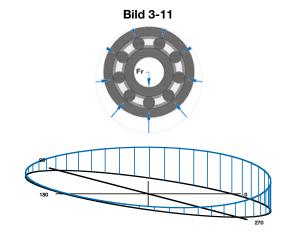
- Größeres Lagerspiel bewirkt, dass weniger Kugeln die Lasten aufnehmen, woraus geringere dynamische Lebensdauer resultiert.
- Zu hohe Vorspannung überlastet das Lager, bevor die Belastung einwirkt.

Überwiegende Axial- und Momentenbelastung


 Größeres Lagerspiel erlaubt einen höheren Kontaktwinkel als die Kugel normalerweise mit der Laufbahn hat und kann somit den auftretenden Kräfte besser entgegenwirken.

Wenn jedoch die Kugel-Laufbahn Kontaktfläche über die Kante hinauswandert, entstehen andere Probleme.

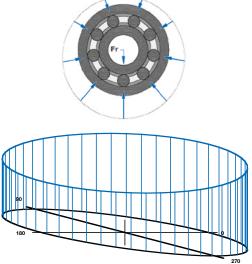
• Höhere Vorspannung überlastet ebenfalls das Lager, bevor die Belastung einwirkt.


Die Methode, entweder den statischen Sicherheitsfaktor oder die dynamische Lebensdauer zu berechnen, erfordert den Einsatz von Computerprogrammen, um den Einfluss auf jede einzelne Kugel innerhalb des Lagers zu bestimmen. Wenn dies berechnet wurde, wird die am stärksten belastete Kugel zur Bestimmung der maximalen Stressbelastung und daraus resultierenden statischen Sicherheitsfaktors herangezogen. Alle Kugelbelastungen werden in einer gewichteten Analyse zur Bestimmung der dynamische L₁₀ Lebensdauer herangezogen.

Zum besseren Verständnis dieses Prinzips, zeigt eine grafische Darstellung in den Bildern 3-10 bis 3-12 die Kugelverteilung in den drei gängigsten Lagertypen. Hier sind die Kugel- und die Kraftverteilung zu sehen. Je höher die Auslenkung, umso höher die Lasten.

KA040CP0 mit 450 N radialer Last Lagerspiel; wenige Kugeln tragen die Last.

Dieses Radiallager hat Spiel, lediglich drei Kugeln tragen die Last mit dem Maximalwert für die unterste Kugel.

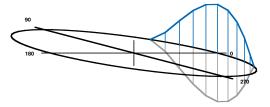


KA040CP0K mit 450 N radialer Last Leichte Lagervorspannung, alle Kugeln tragen die Last.

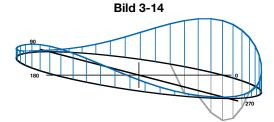
Dieses Radiallager hat eine leichte Vorspannung. Alle Kugeln werden belastet und wie zu sehen ist, hat die untere mittlere Kugel weniger zutragen als im vorherigen Beispiel.

Tragzahlen-, Lebensdauer- und Lastanalyse von REALI-SLIM® Kugellagern (Fortsetzung)

Bild 3-12

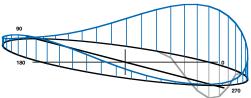

KA040CP0P mit 45 kg radialer Last Hohe Vorspannung.

Dieses Radiallager hat eine sehr hohe Vorspannung. Alle Kugeln werden belastet, und die Last auf die untere Kugel ist genauso hoch wie bei dem Lager mit Spiel im ersten Beispiel.


- Höhere Kapazität
- Höhere Lebensdauer
- Gesichert durch Theorie und Praxis

Ähnliche Diagramme für andere Anwendungen werden unten gezeigt.

Bild 3-13


KA040XP0 mit 450 N radialer Last Lagerspiel; wenige Kugeln tragen die Last.

KA040XP0 mit 450 N radialer Last, mit 450 N axialer Last

Geringer Kugelkontakt, größtenteils unbelastet.

Bild 3-15

KA040XP0 mit 450 N radialer Last, 450 N axialer Last, 3,4 Nm Momentenbelastung

Bild 3-16

KA040XP0K mit 450 N radialer Last, 450 N axialer Last, 3,4 Nm Momentenbelastung

Tragzahlen-, Lebensdauer- und Lastanalyse von REALI-SLIM® Kugellagern (Fortsetzung)

Bild 3-17 zeigt die typische Montage zweier Schrägkugellager zur Aufnahme externer Kräfte \mathbf{F}_r und \mathbf{F}_t .

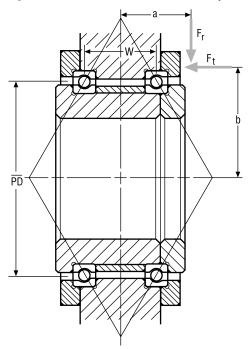


Bild 3-17 Lastdiagramm für ein Lagerpaar in "O"-Anordnung ("back to back")

Radiallast = F_r Axiallast = F_t Momentenlast = F_r a - F_t b

Variable Lastfälle

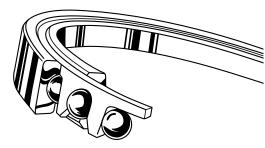
Ein Lagersystem muss oft unter verschiedenen Bedingungen wie "Leerlauf" und "Belastung" funktionieren Bei diesem Beispiel können die Lasten wesentlich variieren. Es ist vorteilhaft, die Lagerlebensdauer für das gesamte Lastspektrum zu kalkulieren. Um dies zu erreichen, kann die Lebensdauer für jeden individuellen Lastfall separat berechnet und anschließend kombiniert werden, um die Systemlebensdauer für einen speziellen Belastungszyklus zu ermitteln.

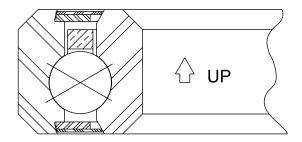
Um diese Kalkulation durchzuführen, zerlegt man die Last in einzelne Sektionen mit der entsprechenden prozentualen Anteil an Umdrehungen als Teil des Gesamten wie z. B:

Fall 1	Fall 2	Fall 3
Radial ₁	Radial ₂	Radial ₃
Axial ₁	Axial ₂	Axial ₃
Moment ₁	Moment ₂	Moment ₃
% Zeit ₁	% Zeit2	% Zeit3
L ₁	L2	Lз

Ersetze die einzelne "Ln" in u.g. Gleichung durch "tn" wobei tn = % Zeitn

Die gesamte gewichtete L_{10} Lebensdauer für dieses System beträgt =


$$L_{\text{10w}} = \frac{100}{\frac{t_1}{L_1} + \frac{t_2}{L_2} + \frac{t_3}{L_3}}$$

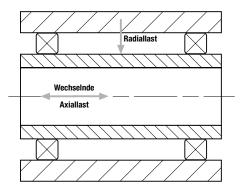

Montage

Lagerausrichtung

Für Anwendungen, bei denen die Rotationsachse bis 45° zur Vertikalen liegt, wird empfohlen, den Käfig so zu montieren, dass die Taschenöffnungen nach unten zeigen, oder das Anschlussmaß der Welle bzw. des Gehäuses muss so erweitert werden, dass ein Herauswandern des Käfigs verhindert wird. Gedichtete und gedeckelte Lager haben diesen Montagehinweis, wie unten zu sehen, als Pfeil mit dem Wort "UP" am Außendurchmesser eingeätzt.

Bild 3-18

Die korrekte Einbaulage wird gezeigt.


Genauigkeit

Bei einer Lageranwendung sind drei Hauptfehlerquellen zu berücksichtigen: Spiel, Verformung und geometrische Ungenauigkeiten des Lagers und der umgebenden Teile. Lagerfehler sind Radialschlag oder Exzentrizität sowie Axialschlag. Im Zusammenhang hiermit stehen vorwiegend Fehlerbetreffend Rundlauf und Planlauf von Flächen der umgebenden Teile.

Spiel kann sowohl zwischen Lager und Welle bzw. Gehäuse als auch im Lager selbst auftreten. In bestimmten Anwendungsfällen kann Spiel nicht toleriert werden, besonders nicht das interne Lagerspiel.

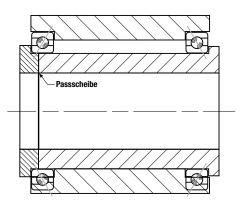
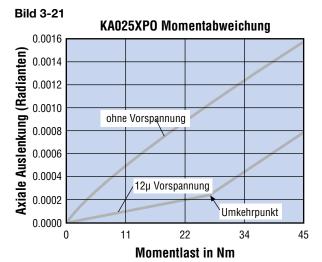

Anhand der in Bild 3-19 gezeigten Belastungen wird ersichtlich, daß bei vorhandenem Lagerspiel die Axiallast bei den Lagern der Typen C und X ein Verschieben der Welle relativ zum Gehäuse verursacht. Durch die einzigartige Innengeometrie mit integrierten Druckwinkeln tritt beim Lager des Typs X weit weniger Axialspiel auf als beim Lager des Typs C gleicher Größe und gleichen Radialspiels. Auch wenn die Axialkraft die axiale Tragfahigkeit des Typs C nicht überschreitet, ist dennoch der Typ X vorzuziehen, wenn die Kontrolle der axialen Bewegungen wichtig ist.

Bild 3-19



Muß ein Axialspiel unbedingt vermieden werden, kann das Lager des Typs X vorgespannt werden, indem Kugeln montiert werden, deren Durchmesser größer ist als der Abstand zwischen innerer und äußerer Lagerlaufbahn. Durch diese allgemein übliche Maßnahme laßt sich das Axialspiel sehr gut kontrollieren bzw. bestimmen. Bei hohen Drehzahlen darf das Lager des Typs X jedoch wegen erhöhter Reibung und erhöhtem Verschleiß nicht vorgespannt werden. Als Alternative bietet sich der Einbau von zwei Lagern des Typs A gemäß Bild3- 20 an. Durch ihren Aufbau sind sie gegen Vorspannung unempfindlicher und lassen sich zudem auch noch nach dem Einbau einstellen, wodurch Spielfreiheit bei geringster Vorspannung erzielt wird.

Bild 3-20

Bei der Verformung des Lagers stellt sich die Frage nach der Federkonstanten (Verhältnis von Belastung zu elastischer Verformung). Hierbei ist es wichtig, die Art und die Größe der Belastung zu berücksichtigen. Die Verformung tritt je nach Art der Last axial, radial und tangential auf. Entsprechend dazu gibt es auch drei unterschiedliche Federkonstanten. Zudem verläuft die Verformung in einem Kugellager nicht linear, so daß sich für die Federkonstante kein gleichbleibender Wert ergibt. Bild 3-21 zeigt eine typische Last-Verformungskurve

Verwenden Sie die REALI-DESIGN™ Software zur grafischen Darstellung der Wellen- und Gehäusepassungen für alle REALI-SLIM® Standardlager.

Die Verformungswerte für die drei Lagerbauformen werden auf den Seiten 104 bis109 gezeigt.

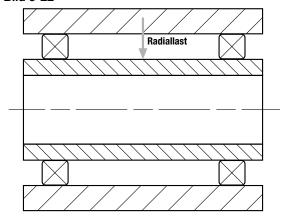
Die Verformung (die Summe der Bewegung durch Druck oder Zug bei Belastung des Lagers) variiert innerhalb einer Serie von einem Typ zum Anderen als Funktion des Kontaktwinkels und der Anzahl Kugeln. Bei nach dem "Conrad-Verfahren" montierten Lagern (Typen C und X) können stärkere Verformungen auftreten als bei "Füllloch-Lagern" oder Typ "A"- Lagern, da die Typen "C" und "X" weniger Kugeln haben. Wenn zwei Lager mit Abstand montiert werden, um Momentenlasten aufzunehmen, ist der Abstand wegen des Winkelfehlers (tilt-of-axis) sehr wichtig.

Wie anhand der Last-Verformungskurve gezeigt, spielt die Vorspannung zur Verringerung der Verformung ebenfalls eine wichtige Rolle. In Bild 3-21 ist zu sehen, dass die Verformung für das nicht vorgespannte Lager nicht linear ist. Weiterhin ist die Stärke der Verformung bei geringen Lasten höher als bei höheren Lasten. Die Verformung für vorgespannte Lager ist bis zum Umkehrpunkt linear. Bei Belastungen jenseits des Umkehrpunktes, erfolgt der weitere Verlauf wie bei den nicht vorgespannten Lagern, jedoch mit einem geringeren Wert.

Deshalb ist bei der Verwendung von vorgespannten Lagern die Verformung durch Betriebsbelastungen deutlich geringer wie ohne Vorspannung.

Das Lager des Typs A reagiert auf Vorspannung unempfindlicher als das Lager des Typs X. Sind maximale Steifigkeit und hohe Drehzahlen erforderlich, ist das Lager des Typs A vorzuziehen.

Die Maßgenauigkeit eines Lagers, die dessen Laufgenauigkeit beeinflußt, ist von der Lagerbauform unabhängig. Radiale und axiale Rundlaufgenauigkeit, Innen- und Außendurchmessertoleranz usw. sind im Wesentlichen gleich bei Lagern der Typen C, A und X.


RODRIGUEZ® bietet:

- ein großes Produktspektrum.
- eine breite Auswahl.
- zusätzliche Informationen über unsere Lager durch unsere Anwendungstechnik.

Lasten

Bei einer reinen Radiallast, wie in Bild 3-22, sind die Lager des Typs C, in Bild 3-24, ideal. Sie sind für radiale Belastungen ausgelegt, erfordern beim Einbau keine Einstellung und sind in einer Vielzahl von Standardgrößen lieferbar. Wie die Abbildung zeigt, ist hier ein Lager axial an beiden Laufringen fixiert, während das andere Lager axial verschiebbar im Gehäuse angeordnet ist. Welle und Gehäuse können sich hierbei unterschiedlich ausdehnen, ohne daß die Lager axial belastet werden.

Bild 3-22

Bei axialer Belastung, wie in Bild 3-19 ist die axiale Tragfähigkeit der Lager zu berücksichtigen. Die Lager des Typs C können eine geringe Axiallast aufnehmen; ist diese jedoch erheblich, ist Typ X oder Typ A die bessere Wahl. Typ X kann, wie in Bild 3-25 dargestellt, in Verbindung mit einem Lager des Typs C verwendet werden. Diese Anordnung entspricht Bild 3-24, außer daß hier der Typ X zur Aufnahme der Axiallast in beiden Richtungen "fest" montiert ist, während der Typ C "lose" angeordnet ist und lediglich die Radiallast aufnimmt. Bei Lagern des Typs A können die in Bild 3-27A und 3-27B dargestellten Einbauanordnungen gewählt werden.

Bei der dritten Belastungsart (Bild 3-23) ist die in Bild 3-24 dargestellte Lageranordnung geeignet, solange die Axiallast klein bleibt. Treten erhebliche Axiallasten auf, sollte eine der Anordnungen der Bilder 3-20, 3-25, und 3-26 gewählt werden. Im letzteren Fall nimmt ein Lager des Typs X alle auftretenden Lastarten auf, wobei Platz, Gewicht und Kosten eingespart werden.

Bild 3-23

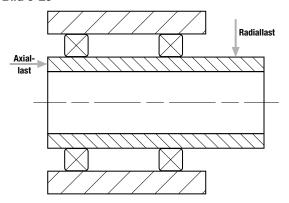
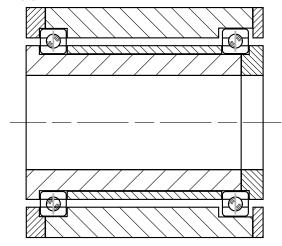
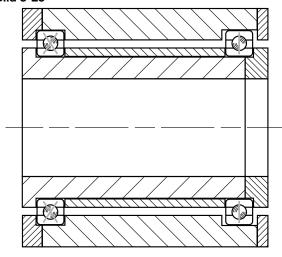



Bild 3-24



Drehzahl

Bei der Auswahl eines Lagers spielt die Drehzahl eine ebenso wichtige Rolle wie die Belastung.

Für den in Bild 3-19 dargestellten Fall waren die Anordnungen von Bild 3-20 und Bild 3-25 hinsichtlich der Belastungsarten gleichermaßen geeignet, jedoch muss auch ihre Eignung für hohe Drehzahlen berücksichtigt werden.

Bild 3-25

Für hohe Drehzahlen sind die Lager des Typs A (Bild 3-20), welche eine optimale Einstellung des Lagerspiels ermöglichen, besser geeignet.

Werden zwei Lager des Typs A in größerem Abstand ohne jegliche Lagerluft gegeneinander angestellt, können unter Umständen Lagerverspannungen durch unterschiedliche Wärmeausdehnung von Gehäuse und Welle auftreten. In diesem Fall kann die Fest-Los- Lageranordnung nach Bild 3-27A und 3-27B verwendet werden, wobei ein Lagerpaar des Typs A als Festlager und ein Lager des Typs C als Loslager dient. Eine weitere Möglichkeit besteht darin, die Lager des Typs A nach Bild 3-20 elastisch mit Federn vorzuspannen.

Bild 3-26

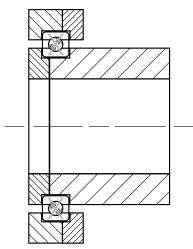


Bild 3-27A - "O"-Anordnung ("back to back")

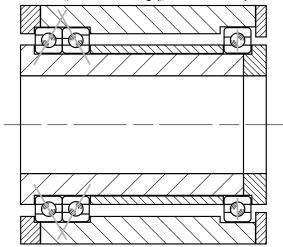
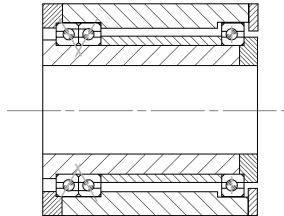
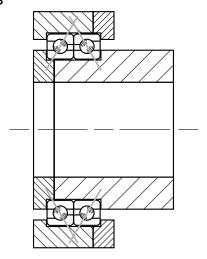




Bild 3-27B - "X"-Anordnung ("face to face")

Bei begrenztem Platz, kombinierter Belastung und relativ hohen Drehzahlen wäre ein Lagerpaar vom Typ A, wie in Bild 3-28 gezeigt, einem einzelnen Lager vom Typ X, wie in Bild 3-26 gezeigt, vorzuziehen. In diesem Fall muß die Vorspannung möglichst gering gehalten werden. Dies wird dadurch erreicht, daß ein kurzes Distanzstück zwischen die äußeren Laufringe montiert wird und die Lager mittels der inneren Laufringe eingestellt werden.

Bild 3-28

Grenzdrehzahlen in Kapitel 4.

Weitere Überlegungen

Reibmoment

Das Reibmoment ist besonders bei geringen Antriebskräften von Bedeutung. Soweit möglich, sollte in diesem Fall auf die Vorspannung verzichtet werden. Nimmt ein Lager des Typs X kombinierte Belastungen auf, so ist eine höhere Reibung als beim Typ A zu erwarten. Käfig, Schmiegung, Schmierung, Wellen- und Gehäusepassung sowie Temperatur gehören zu den Faktoren, die die Lagerreibung beeinflussen. Vor dem Hintergrund eines niedrigen Antriebsmomentes hat der Techniker die Möglichkeit, die einzelnen Faktoren abzuwägen. Zusätzliche Informationen zum Reibmoment enthält Kapitel 4. Für weitere Informationen, senden Sie den Vordruck "Anwendungsspezifikation" (siehe Seite 125 oder unsere Website) an unsere Anwendungstechnik oder benutzen Sie die REALI-DESIGN™

Lagermontage

Welche Werkstoffe werden für Welle und Gehäuse verwendet? Welchen Betriebstemperaturen wird das Lager ausgesetzt? Gibt es ein Temperaturgefälle zwischen der Welle und dem Gehäuse? Die Beantwortung dieser Fragen ist notwendig für die richtige Lagerauswahl und Anwendung. Deutlich unterschiedliche Ausdehnungen führen zu spürbaren Änderungen an den äußeren und inneren Lagerpassungen, insbesondere beim dünnwandigen REALI-SLIM® Lager. Diese Änderungen beeinflussen Laufgenauigkeit, Reibung und Lebensdauer der Lager.

Optimale Montagebedingungen

- Welle und Gehäuse aus Material mit dem selben Ausdehnungskoeffizienten
- Wellen- und Gehäusedurchmesser innerhalb der Lagerrundlauftoleranzen (radial)
- Schulter innerhalb der Lagerrundlauftoleranzen (axial)

- Lagerquerschnitt ausrechend steif, um eine gleichmäßige Lastverteilung innerhalb des Lagers zu gewährleisten
- Passende Dichtung oder Deckel, um das Lager vor Verunreinigung zu schützen

Typische Lageranordnungen

Typ C und Typ A Lager

- Eingesetzt mit einem zweiten Lager in ausreichendem Abstand, um Momente aufnehmen zu können
- Bei Anwendungen, bei denen die Rotationsachse bis 45° zur Vertikalen liegt, wird empfohlen, den Käfig so zu montieren, dass die Taschenöffnungen nach unten liegen oder das Anschlussmaß der Welle bzw. des Gehäuses muss so erweitert werden, dass ein Herauswandern des Käfigs verhindert wird.

Alle Typen

- Fixierte Ringe durch positve axiale Klemmung
- Sicherungsringe nur zur Positionierung und bei leichten Belastungen
- Schultern, Hülsen, oder Klemmringe bei schweren Belastungen
- Presssitze sind ungeeignet, um axiale Lasten aufzunehmen

Temperatur

 Es muß dafür gesorgt sein, daß die Betriebstemperatur des Lagers im Bereich von -55° bis +120°C bleibt, ohne daß dabei ein nennenswertes Temperaturgefälle im Lager entsteht.

Schmierung

- Die Standardlager sind mit einem konservierenden Schutzöl versehen
- Konservierte Lager müssen gereinigt und mit für die jeweilige Anwendung geeignetem Öl oder Fett befettet werden. Siehe Kapitel 5.

Geschwindigkeit

Innerhalb der Grenzen der Tabelle in Kapitel 4 – Verwenden Sie die REALI-DESIGN™ Software.

Belastungen

- Statische Belastung wie im Katalog angegeben, unter Berücksichtigung eines bestimmten Sicherheitsfaktors.
- Prüfung, ob die dynamische L₁₀ Lebensdauer ausreichend ist (siehe Seite 71). Verwenden Sie die REALI-DESIGN™ Software.

Toleranzklassen und empfohlene Passungen für REALI-SLIM® Kugellager in Standardanwendungen

		TY	P C -	TOLE	RANZK	LASS	E 1 (F	REF. A	ABEC	1F)		
	Lage	er-Ø		& Axial nlag	Rotieren	de Welle		Stehen	de Welle		Podi	iales
Lager- größe (Zoll Serie)	Bohrung Nominal +0,000	Bohrung Außen-Ø Nominal +0,000	Innenring	Außenring	Wellen-Ø Nominal +0,000	Gehäuse- bohrung Nominal +0,000	Welle Non	en-Ø ninal		ebohrung ninal	Lager	
10	-0,010	-0,013	0,013	0,020	0,010	0,013	-0,010	-0,020	-0,013	-0,025	0,025	0,041
15	-0,013	-0,013	0,015	0,020	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,030	0,046
17	-0,015	-0,013	0,020	0,025	0,015	0,013	-0,015	-0,030	-0,013	-0,025	0,030	0,061
20	-0,015	-0,013	0,020	0,025	0,015	0,013	-0,015	-0,030	-0,013	-0,025	0,030	0,061
25	-0,015	-0,013	0,020	0,025	0,015	0,013	-0,015	-0,030	-0,013	-0,025	0,030	0,061
30	-0,015	-0,015	0,020	0,025	0,015	0,015	-0,020	-0,030	-0,015	-0,030	0,030	0,061
35	-0,020	-0,015	0,025	0,030	0,020	0,015	-0,020	-0,041	-0,015	-0,030	0,041	0,071
40	-0,020	-0,015	0,025	0,030	0,020	0,015	-0,020	-0,041	-0,015	-0,030	0,041	0,071
42	-0,020	-0,020	0,025	0,036	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,041	0,071
45	-0,020	-0,020	0,025	0,036	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,041	0,071
47	-0,025	-0,020	0,030	0,036	0,025	0,020	-0,025	-0,051	-0,020	-0,041	0,051	0,086
50	-0,025	-0,020	0,030	0,036	0,025	0,020	-0,025	-0,051	-0,020	-0,041	0,051	0,086
55	-0,025	-0,025	0,030	0,041	0,025	0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,086
60	-0,025	-0,025	0,030	0,041	0,025	0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,086
65	-0,025	-0,025	0,030	0,041	0,025	0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,086
70	-0,025	-0,030	0,030	0,041	0,025	0,030	-0,025	-0,051	-0,030	-0,061	0,061	0,107
75	-0,030	-0,030	0,041	0,046	0,030	0,030	-0,030	-0,061	-0,030	-0,061	0,061	0,107
80	-0,030	-0,030	0,041	0,046	0,030	0,030	-0,030	-0,061	-0,030	-0,061	0,061	0,107
90	-0,030	-0,030	0,041	0,046	0,030	0,030	-0,030	-0,061	-0,030	-0,061	0,061	0,107
100	-0,036	-0,036	0,046	0,051	0,036	0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,122
110	-0,036	-0,036	0,046	0,051	0,036	0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,122
120	-0,036	-0,036	0,046	0,051	0,036	0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,122
140	-0,041	-0,041	0,046	0,051	0,041	0,041	-0,041	-0,081	-0,041	-0,081	0,081	0,132
160	-0,046	-0,046	0,046	0,051	0,046	0,046	-0,046	-0,091	-0,046	-0,091	0,091	0,142
180	-0,046	-0,046	0,051	0,051	0,046	0,046	-0,046	-0,091	-0,046	-0,091	0,091	0,142
200	-0,051	-0,051	0,051	0,051	0,051	0,051	-0,051	-0,102	-0,051	-0,102	0,102	0,152
210	-0,051	-0,051	0,051	0,051	0,051	0,051	-0,051	-0,102	-0,051	-0,102	0,102	0,152
220	-0,051	-0,051	0,051	0,051	0,051	0,051	-0,051	-0,102	-0,051	-0,102	0,102	0,152
250	-0,076	-0,076	0,051	0,051	0,076	0,076	-0,076	-0,152	-0,076	-0,152	0,152	0,203
300	-0,076	-0,076	0,051	0,051	0,076	0,076	-0,076	-0,152	-0,076	-0,152	0,152	0,203
350	-0,102	-0,102	0,051	0,051	0,102	0,102	-0,102	-0,203	-0,102	-0,203	0,203	0,254
400	-0,102	-0,102	0,051	0,051	0,102	0,102	-0,102	-0,203	-0,102	-0,203	0,203	0,254

Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.

Toleranz der Gesamtlagerbreite: bis zu 12" Lagerbohrung über 12" Lagerbohrung

+0,000 -0,127 +0,000 -0,254

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik.

Toleranzklassen und empfohlene Passungen für REALI-SLIM® Kugellager in Standardanwendungen

	Т	YP X	UND	A – TC	LERAI	NZKL <i>A</i>	ASSE	1 (RE	F. AB	EC 1F	:)	
	Lage	er-Ø		& Axial nlag	Rotierenc	le Welle		Stehen	de Welle		Radi	
Lager- größe (Zoll Serie)	Bohrung Nominal +0,000	Bohrung Außen- Nominal +0,000	Innenring	Außenring	Wellen-Ø Nominal +0,000	Gehäuse- bohrung Nominal +0,000	Wello Non	en-Ø ninal		ebohrung ninal	Lager (nur 1 vor Mo	yp X)
10	-0,010	-0,013	0,008	0,010	0,010	0,013	-0,010	-0,020	-0,013	-0,025	0,025	0,038
15	-0,013	-0,013	0,010	0,010	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,030	0,043
17	-0,015	-0,013	0,013	0,013	0,015	0,013	-0,015	-0,030	-0,013	-0,025	0,030	0,056
20	-0,015	-0,013	0,013	0,013	0,015	0,013	-0,015	-0,030	-0,013	-0,025	0,030	0,056
25	-0,015	-0,013	0,013	0,013	0,015	0,013	-0,015	-0,030	-0,013	-0,025	0,030	0,056
30	-0,015	-0,015	0,015	0,015	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,030	0,056
35	-0,020	-0,015	0,015	0,015	0,020	0,015	-0,020	-0,041	-0,015	-0,030	0,041	0,066
40	-0,020	-0,015	0,015	0,015	0,020	0,015	-0,020	-0,041	-0,015	-0,030	0,041	0,066
42	-0,020	-0,020	0,020	0,020	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,041	0,066
45	-0,020	-0,020	0,020	0,020	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,041	0,066
47	-0,025	-0,020	0,020	0,020	0,025	0,020	-0,025	-0,051	-0,020	-0,041	0,051	0,076
50	-0,025	-0,020	0,020	0,020	0,025	0,020	-0,025	-0,051	-0,020	-0,041	0,051	0,076
55	-0,025	-0,025	0,025	0,025	0,025	0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,076
60	-0,025	-0,025	0,025	0,025	0,025	0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,076
65	-0,025	-0,025	0,025	0,025	0,025	0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,076
70	-0,025	-0,030	0,025	0,025	0,025	0,030	-0,025	-0,051	-0,030	-0,061	0,061	0,086
75	-0,030	-0,030	0,030	0,030	0,030	0,030	-0,030	-0,061	-0,030	-0,061	0,061	0,086
80	-0,030	-0,030	0,030	0,030	0,030	0,030	-0,030	-0,061	-0,030	-0,061	0,061	0,086
90	-0,030	-0,030	0,030	0,030	0,030	0,030	-0,030	-0,061	-0,030	-0,061	0,061	0,086
100	-0,036	-0,036	0,036	0,036	0,036	0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,097
110	-0,036	-0,036	0,036	0,036	0,036	0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,097
120	-0,036	-0,036	0,036	0,036	0,036	0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,097
140	-0,036	-0,036	0,036	0,036	0,036	0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,097
160	-0,041	-0,041	0,041	0,041	0,041	0,041	-0,041	-0,081	-0,041	-0,081	0,081	0,107
180	-0,041	-0,041	0,041	0,041	0,041	0,041	-0,041	-0,081	-0,041	-0,081	0,081	0,107
200	-0,046	-0,046	0,046	0,046	0,046	0,046	-0,046	-0,091	-0,046	-0,091	0,091	0,117
210	-0,046	-0,046	0,046	0,046	0,046	0,046	-0,046	-0,091	-0,046	-0,091	0,091	0,117
220	-0,046	-0,046	0,046	0,046	0,046	0,046	-0,046	-0,091	-0,046	-0,091	0,091	0,117
250	-0,046	-0,046	0,046	0,046	0,046	0,046	-0,046	-0,091	-0,046	-0,091	0,091	0,117
300	-0,046	-0,046	0,046	0,046	0,046	0,046	-0,046	-0,091	-0,046	-0,091	0,091	0,117
350	-0,051	-0,051	0,051	0,051	0,051	0,051	-0,051	-0,102	-0,051	-0,102	0,102	0,127
400	-0,051	-0,051	0,051	0,051	0,051	0,051	-0,051	-0,102	-0,051	-0,102	0,102	0,127

Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind. $\label{thm:continuous} \mbox{Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.}$

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellen-und Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik.

Abmessungen in mm.

Toleranz der Gesamtlagerbreite loleranz der Gesamtlagerbreit

– Gepaarte Type A Lager:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung
Toleranz der Lagerbreite

– Einzellager Typ C, X, A:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung

+0,000 -0,254 +0,000 -0,508

+0,000 -0,127 +0,000 -0,254

Toleranzklassen und empfohlene Passungen für REALI-SLIM® Kugellager in Standardanwendungen

	TY	'P C, 2	X UNE) A – T	OLER	ANZK	LASS	E 3 (R	EF. A	BEC 3	BF)	
	Lago	er-Ø		& Axial nlag	Rotieren	de Welle		Stehend	le Welle			ales
Lager- größe (Zoll Serie)	Bohrung Nominal +0,000	Bohrung Außen-Ø Nominal +0,000	Innenring	Außenring	Wellen-Ø Nominal +0,000	Gehäuse- bohrung Nominal +0,000		en-Ø ninal		ebohrung ninal		spiel* X und C) ontage
10	-0,005	-0,008	0,008	0,010	0,005	0,008	-0,005	-0,010	-0,008	-0,015	0,018	0,028
15	-0,008	-0,008	0,010	0,010	0,008	0,008	-0,008	-0,015	-0,008	-0,015	0,020	0,030
17	-0,010	-0,010	0,010	0,013	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,020	0,046
20	-0,010	-0,010	0,010	0,013	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,020	0,046
25	-0,010	-0,010	0,010	0,013	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,020	0,046
30	-0,010	-0,010	0,010	0,015	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,020	0,046
35	-0,013	-0,010	0,013	0,015	0,013	0,010	-0,013	-0,025	-0,010	-0,020	0,025	0,051
40	-0,013	-0,010	0,013	0,015	0,013	0,010	-0,013	-0,025	-0,010	-0,020	0,025	0,051
42	-0,013	-0,013	0,013	0,020	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,051
45	-0,013	-0,013	0,013	0,020	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,051
47	-0,015	-0,013	0,015	0,020	0,015	0,013	-0,015	-0,030	-0,013	-0,025	0,030	0,056
50	-0,015	-0,013	0,015	0,020	0,015	0,013	-0,015	-0,030	-0,013	-0,025	0,030	0,056
55	-0,015	-0,015	0,015	0,023	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,030	0,056
60	-0,015	-0,015	0,015	0,023	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,030	0,056
65	-0,015	-0,015	0,015	0,023	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,030	0,056
70	-0,015	-0,018	0,015	0,025	0,015	0,018	-0,015	-0,030	-0,018	-0,036	0,036	0,061
75	-0,018	-0,018	0,020	0,025	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,036	0,061
80	-0,018	-0,018	0,020	0,025	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,036	0,061
90	-0,018	-0,018	0,020	0,025	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,036	0,061
100	-0,020	-0,020	0,025	0,030	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,041	0,066
110	-0,020	-0,020	0,025	0,030	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,041	0,066
120	-0,020	-0,023	0,025	0,036	0,020	0,023	-0,020	-0,041	-0,023	-0,046	0,046	0,071
140	-0,020	-0,023	0,030	0,036	0,020	0,023	-0,020	-0,041	-0,023	-0,046	0,046	0,071
160	-0,023	-0,025	0,036	0,041	0,023	0,025	-0,023	-0,046	-0,025	-0,051	0,051	0,076
180	-0,023	-0,025	0,036	0,041	0,023	0,025	-0,023	-0,046	-0,025	-0,051	0,051	0,076
200	-0,025	-0,030	0,041	0,046	0,025	0,030	-0,025	-0,051	-0,030	-0,061	0,061	0,086

Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.

Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik.

Toleranz der Gesamtlagerbreite
– Gepaarte Type A Lager: - Gepaarte Type A Lager:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung
Toleranz der Lagerbreite
- Einzellager Typ C, X, A:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung

+0,000 -0,254 +0,000 -0,508

+0,000 -0,127 +0,000 -0,254

Toleranzklassen und empfohlene Passungen für REALI-SLIM® Kugellager in Standardanwendungen

	Т	YP C,	X U	ND A	- TC	DLER	ANZK	LASS	E 4 (REF.	ABE	C 5F)		
Lager-	Lago	er-Ø			& Axial nlag		Rotieren	de Welle		Steheno	le Welle		Rad Lager	iales
größe (Zoll Serie)	Bohrung	Bohrung Außen-Ø	Inne	nring	Auße	nring	Wellen-Ø	Gehäuse- bohrung	Well	en-Ø	Gehäuse	bohrung	(nur Typ	X und C)
	+0,000	Nominal +0,000	Radial	Axial	Radial	Axial	Nominal +0,000	Nominal +0,000		ninal	Non	ninal	vor Mo	ontage
10	-0,005	-0,005	0,005	0,008	0,005	0,008	0,005	0,005	-0,005	-0,010	-0,005	-0,010	0,013	0,023
15	-0,005	-0,005	0,005	0,008	0,005	0,008	0,005	0,005	-0,005	-0,010	-0,005	-0,010	0,013	0,023
17	-0,008	-0,008	0,005	0,008	0,008	0,010	0,008	0,008	-0,008	-0,015	-0,008	-0,015	0,015	0,030
20	-0,008	-0,008	0,005	0,008	0,008	0,010	0,008	0,008	-0,008	-0,015	-0,008	-0,015	0,015	0,030
25	-0,008	-0,008	0,005	0,008	0,008	0,010	0,008	0,008	-0,008	-0,015	-0,008	-0,015	0,015	0,030
30	-0,008	-0,008	0,005	0,008	0,010	0,013	0,008	0,008	-0,008	-0,015	-0,008	-0,015	0,015	0,030
35	-0,008	-0,008	0,008	0,010	0,010	0,013	0,008	0,008	-0,008	-0,015	-0,008	-0,015	0,015	0,030
40	-0,008	-0,008	0,008	0,010	0,010	0,013	0,008	0,008	-0,008	-0,015	-0,008	-0,015	0,015	0,030
42	-0,008	-0,010	0,008	0,010	0,010	0,013	0,008	0,010	-0,008	-0,015	-0,010	-0,020	0,020	0,036
45	-0,008	-0,010	0,008	0,010	0,010	0,013	0,008	0,010	-0,008	-0,015	-0,010	-0,020	0,020	0,036
47	-0,010	-0,010	0,008	0,010	0,010	0,013	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,020	0,036
50	-0,010	-0,010	0,008	0,010	0,010	0,013	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,020	0,036
55	-0,010	-0,013	0,008	0,010	0,013	0,015	0,010	0,013	-0,010	-0,020	-0,013	-0,025	0,025	0,041
60	-0,010	-0,013	0,008	0,010	0,013	0,015	0,010	0,013	-0,010	-0,020	-0,013	-0,025	0,025	0,041
65	-0,010	-0,013	0,008	0,010	0,013	0,015	0,010	0,013	-0,010	-0,020	-0,013	-0,025	0,025	0,041
70	-0,010	-0,013	0,008	0,010	0,013	0,015	0,010	0,013	-0,010	-0,020	-0,013	-0,025	0,025	0,041
75	-0,013	-0,013	0,010	0,013	0,013	0,015	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,041
80	-0,013	-0,013	0,010	0,013	0,013	0,015	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,041
90	-0,013	-0,013	0,010	0,013	0,013	0,015	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,041
100	-0,013	-0,013	0,013	0,015	0,015	0,018	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,041
110	-0,013	-0,013	0,013	0,015	0,015	0,018	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,041
120	-0,013	-0,015	0,013	0,015	0,018	0,020	0,013	0,015	-0,013	-0,025	-0,015	-0,030	0,030	0,046
140	-0,015	-0,015	0,013	0,018	0,018	0,020	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,030	0,046
160	-0,015	-0,018	0,018	0,020	0,020	0,023	0,015	0,018	-0,015	-0,030	-0,018	-0,036	0,036	0,051
180	-0,015	-0,018	0,018	0,020	0,020	0,023	0,015	0,018	-0,015	-0,030	-0,018	-0,036	0,036	0,051
200	-0,018	-0,020	0,020	0,023	0,023	0,025	0,018	0,020	-0,015	-0,036	-0,018	-0,041	0,041	0,056

^{*} Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.

Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik. Toleranz der Gesamtlagerbreite

– Gepaarte Type A Lager:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung
Toleranz der Lagerbreite

– Einzellager Typ C, X, A:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung

+0,000 -0,254 +0,000 -0,508

+0,000 -0,127 +0,000 -0,254

Toleranzklassen und empfohlene Passungen für REALI-SLIM® Kugellager in Standardanwendungen

	TY	'P C, 2	X UNE) A – T	OLER	ANZK	LASS	E 6 (R	EF. A	BEC 7	'F)	
	Lago	er-Ø		& Axial nlag	Rotierend	de Welle		Steheno	le Welle			iales
Lager- größe (Zoll Serie)	Bohrung Nominal +0,000	Bohrung Außen-Ø Nominal +0,000	Innenring	Außenring	Wellen-Ø Nominal +0,000	Gehäuse- bohrung Nominal +0,000	Welld Non	en-Ø ninal		bohrung ninal	Lager (nur Typ vor Mo	X und C)
10	-0,004	-0,005	0,004	0,005	0,004	0,005	-0,004	-0,008	-0,005	-0,010	0,010	0,020
15	-0,005	-0,005	0,004	0,005	0,005	0,005	-0,005	-0,010	-0,005	-0,010	0,010	0,020
17	-0,005	-0,005	0,004	0,005	0,005	0,005	-0,005	-0,010	-0,005	-0,010	0,010	0,025
20	-0,005	-0,005	0,004	0,005	0,005	0,005	-0,005	-0,010	-0,005	-0,010	0,010	0,025
25	-0,005	-0,005	0,004	0,005	0,005	0,005	-0,005	-0,010	-0,005	-0,010	0,010	0,025
30	-0,005	-0,008	0,004	0,005	0,005	0,008	-0,005	-0,010	-0,008	-0,015	0,015	0,030
35	-0,006	-0,008	0,005	0,005	0,006	0,008	-0,006	-0,013	-0,008	-0,015	0,015	0,030
40	-0,006	-0,008	0,005	0,005	0,006	0,008	-0,006	-0,013	-0,008	-0,015	0,015	0,030
42	-0,006	-0,010	0,005	0,008	0,006	0,010	-0,006	-0,013	-0,010	-0,020	0,020	0,036
45	-0,006	-0,010	0,005	0,008	0,006	0,010	-0,006	-0,013	-0,010	-0,020	0,020	0,036
47	-0,008	-0,010	0,008	0,008	0,008	0,010	-0,008	-0,015	-0,010	-0,020	0,020	0,036
50	-0,008	-0,010	0,008	0,008	0,008	0,010	-0,008	-0,015	-0,010	-0,020	0,020	0,036
55	-0,008	-0,010	0,008	0,008	0,008	0,010	-0,008	-0,015	-0,010	-0,020	0,020	0,036
60	-0,008	-0,010	0,008	0,008	0,008	0,010	-0,008	-0,015	-0,010	-0,020	0,020	0,036
65	-0,008	-0,010	0,008	0,008	0,008	0,010	-0,008	-0,015	-0,010	-0,020	0,020	0,036
70	-0,008	-0,010	0,008	0,010	0,008	0,010	-0,008	-0,015	-0,010	-0,020	0,020	0,036
75	-0,010	-0,010	0,008	0,010	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,020	0,036
80	-0,010	-0,010	0,008	0,010	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,020	0,036
90	-0,010	-0,010	0,008	0,010	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,020	0,036
100	-0,013	-0,013	0,010	0,010	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,041
110	-0,013	-0,013	0,010	0,010	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,041
120	-0,013	-0,013	0,010	0,013	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,025	0,041
140	-0,013	-0,015	0,010	0,013	0,013	0,015	-0,013	-0,025	-0,015	-0,030	0,030	0,046

Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.
Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik.

Toleranz der Gesamtlagerbreite – Gepaarte Type A Lager:

bis zu 12" Lagerbohrung über 12" Lagerbohrung

uber 12" Lagerbohrung Toleranz der Lagerbreite – Einzellager Typ C, X, A: bis zu 12" Lagerbohrung über 12" Lagerbohrung

+0,000 -0,254 +0,000 -0,508

+0,000 -0,127 +0,000 -0,254

Toleranzklassen und empfohlene Passungen für ENDURA-SLIM® Kugellager

TY	PCM	IIT EN	DURA	KOTE	® BES	СНІСІ	HTUN	G – T(OLERA	ANZK	LASSI	≣ 1
	Lage	er-Ø		& Axial nlag	Rotieren	de Welle		Steheno	le Welle		Radi	iales
Lager- größe (Zoll Serie)	Bohrung Nominal +0,000	Bohrung Außen-Ø Nominal +0,000	Innenring	Außenring	Wellen-Ø Nominal +0,000	Gehäuse- bohrung Nominal +0,000		en-Ø ninal		ebohrung ninal		spiel* X und C) ontage
10	-0,015	-0,018	0,013	0,020	0,015	0,018	-0,015	-0,030	-0,018	-0,036	0,025	0,041
15	-0,018	-0,018	0,015	0,020	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,030	0,046
17	-0,020	-0,018	0,020	0,025	0,020	0,018	-0,020	-0,041	-0,018	-0,036	0,030	0,061
20	-0,020	-0,018	0,020	0,025	0,020	0,018	-0,020	-0,041	-0,018	-0,036	0,030	0,061
25	-0,020	-0,018	0,020	0,025	0,020	0,018	-0,020	-0,041	-0,018	-0,036	0,030	0,061
30	-0,020	-0,020	0,020	0,025	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,030	0,061
35	-0,025	-0,020	0,025	0,030	0,025	0,020	-0,025	-0,051	-0,020	-0,041	0,041	0,071
40	-0,023	-0,018	0,025	0,030	0,023	0,018	-0,023	-0,046	-0,018	-0,036	0,041	0,071
42	-0,023	-0,023	0,025	0,036	0,023	0,023	-0,023	-0,046	-0,023	-0,046	0,041	0,071
45	-0,023	-0,023	0,025	0,036	0,023	0,023	-0,023	-0,046	-0,023	-0,046	0,041	0,071
47	-0,028	-0,023	0,030	0,036	0,028	0,023	-0,028	-0,056	-0,023	-0,046	0,051	0,086
50	-0,028	-0,023	0,030	0,036	0,028	0,023	-0,028	-0,056	-0,023	-0,046	0,051	0,086
55	-0,028	-0,028	0,030	0,041	0,028	0,028	-0,028	-0,056	-0,028	-0,056	0,051	0,086
60	-0,028	-0,028	0,030	0,041	0,028	0,028	-0,028	-0,056	-0,028	-0,056	0,051	0,086
65	-0,028	-0,028	0,030	0,041	0,028	0,028	-0,028	-0,056	-0,028	-0,056	0,051	0,086
70	-0,028	-0,033	0,030	0,041	0,028	0,033	-0,028	-0,056	-0,033	-0,066	0,061	0,107
75	-0,033	-0,033	0,041	0,046	0,033	0,033	-0,033	-0,066	-0,033	-0,066	0,061	0,107
80	-0,033	-0,033	0,041	0,046	0,033	0,033	-0,033	-0,066	-0,033	-0,066	0,061	0,107
90	-0,033	-0,033	0,041	0,046	0,033	0,033	-0,033	-0,066	-0,033	-0,066	0,061	0,107
100	-0,038	-0,038	0,046	0,051	0,038	0,038	-0,038	-0,076	-0,038	-0,076	0,071	0,122
110	-0,038	-0,038	0,046	0,051	0,038	0,038	-0,038	-0,076	-0,038	-0,076	0,071	0,122
120	-0,038	-0,038	0,046	0,051	0,038	0,038	-0,038	-0,076	-0,038	-0,076	0,071	0,122
140	-0,043	-0,043	0,046	0,051	0,043	0,043	-0,043	-0,086	-0,043	-0,086	0,081	0,132
160	-0,048	-0,048	0,046	0,051	0,048	0,048	-0,048	-0,097	-0,048	-0,097	0,091	0,142
180	-0,048	-0,048	0,051	0,051	0,048	0,048	-0,048	-0,097	-0,048	-0,097	0,091	0,142
200	-0,053	-0,053	0,051	0,051	0,053	0,053	-0,053	-0,107	-0,053	-0,107	0,102	0,152
210	-0,053	-0,053	0,051	0,051	0,053	0,053	-0,053	-0,107	-0,053	-0,107	0,102	0,152
220	-0,053	-0,053	0,051	0,051	0,053	0,053	-0,053	-0,107	-0,053	-0,107	0,102	0,152
250	-0,079	-0,079	0,051	0,051	0,079	0,079	-0,079	-0,157	-0,079	-0,157	0,152	0,203
300	-0,079	-0,079	0,051	0,051	0,079	0,079	-0,079	-0,157	-0,079	-0,157	0,152	0,203
350	-0,104	-0,104	0,051	0,051	0,104	0,104	-0,104	-0,208	-0,104	-0,208	0,203	0,254
400	-0,104	-0,104	0,051	0,051	0,104	0,104	-0,104	-0,208	-0,104	-0,208	0,203	0,254

^{*} Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.

Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik.

Abmessungen in mm.

Toleranz der Gesamtlagerbreite

– Gepaarte Type A Lager:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung
Toleranz der Lagerbreite

– Einzellager Typ C, X, A:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung

+0,000 -0,254 +0,000 -0,508

+0,000 -0,127 +0,000 -0,254

Toleranzklassen und empfohlene Passungen für ENDURA-SLIM® Kugellager

TYP	X UNI	O A MI	T END	URAK	OTE® B	ESCH	ICHTL	JNG -	TOLE	RANZ	KLAS	SE 1
	Lago	er-Ø		& Axial nlag	Rotierend	de Welle		Steheno	le Welle		Radi	iales
Lager- größe (Zoll Serie)	Bohrung Nominal +0,000	Bohrung Außen-Ø Nominal +0,000	Innenring	Außenring	Wellen-Ø Nominal +0,000	Gehäuse- bohrung Nominal +0,000	Welld Non	en-Ø ninal	Gehäuse Non		(nur Typ	spiel* X und C) ontage
10	-0,015	-0,018	0,008	0,010	0,015	0,018	-0,015	-0,030	-0,018	-0,036	0,025	0,038
15	-0,018	-0,018	0,010	0,010	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,030	0,043
17	-0,020	-0,018	0,013	0,013	0,020	0,018	-0,020	-0,041	-0,018	-0,036	0,030	0,056
20	-0,020	-0,018	0,013	0,013	0,020	0,018	-0,020	-0,041	-0,018	-0,036	0,030	0,056
25	-0,020	-0,018	0,013	0,013	0,020	0,018	-0,020	-0,041	-0,018	-0,036	0,030	0,056
30	-0,020	-0,020	0,015	0,015	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,030	0,056
35	-0,025	-0,020	0,015	0,015	0,025	0,020	-0,025	-0,051	-0,020	-0,041	0,041	0,066
40	-0,023	-0,018	0,015	0,015	0,023	0,018	-0,023	-0,046	-0,018	-0,036	0,041	0,066
42	-0,023	-0,023	0,020	0,020	0,023	0,023	-0,023	-0,046	-0,023	-0,046	0,041	0,066
45	-0,023	-0,023	0,020	0,020	0,023	0,023	-0,023	-0,046	-0,023	-0,046	0,041	0,066
47	-0,028	-0,023	0,020	0,020	0,028	0,023	-0,028	-0,056	-0,023	-0,046	0,051	0,076
50	-0,028	-0,023	0,020	0,020	0,028	0,023	-0,028	-0,056	-0,023	-0,046	0,051	0,076
55	-0,028	-0,028	0,025	0,025	0,028	0,028	-0,028	-0,056	-0,028	-0,056	0,051	0,076
60	-0,028	-0,028	0,025	0,025	0,028	0,028	-0,028	-0,056	-0,028	-0,056	0,051	0,076
65	-0,028	-0,028	0,025	0,025	0,028	0,028	-0,028	-0,056	-0,028	-0,056	0,051	0,076
70	-0,028	-0,033	0,025	0,025	0,028	0,033	-0,028	-0,056	-0,033	-0,066	0,061	0,086
75	-0,033	-0,033	0,030	0,030	0,033	0,033	-0,033	-0,066	-0,033	-0,066	0,061	0,086
80	-0,033	-0,033	0,030	0,030	0,033	0,033	-0,033	-0,066	-0,033	-0,066	0,061	0,086
90	-0,033	-0,033	0,030	0,030	0,033	0,033	-0,033	-0,066	-0,033	-0,066	0,061	0,086
100	-0,038	-0,038	0,036	0,036	0,038	0,038	-0,038	-0,076	-0,038	-0,076	0,071	0,097
110	-0,038	-0,038	0,036	0,036	0,038	0,038	-0,038	-0,076	-0,038	-0,076	0,071	0,097
120	-0,038	-0,038	0,036	0,036	0,038	0,038	-0,038	-0,076	-0,038	-0,076	0,071	0,097
140	-0,038	-0,038	0,036	0,036	0,038	0,038	-0,038	-0,076	-0,038	-0,076	0,071	0,097
160	-0,043	-0,043	0,041	0,041	0,043	0,043	-0,043	-0,086	-0,043	-0,086	0,081	0,107
180	-0,043	-0,043	0,041	0,041	0,043	0,043	-0,043	-0,086	-0,043	-0,086	0,081	0,107
200	-0,048	-0,048	0,046	0,046	0,048	0,048	-0,048	-0,097	-0,048	-0,097	0,091	0,117
210	-0,048	-0,048	0,046	0,046	0,048	0,048	-0,048	-0,097	-0,048	-0,097	0,091	0,117
220	-0,048	-0,048	0,046	0,046	0,048	0,048	-0,048	-0,097	-0,048	-0,097	0,091	0,117
250	-0,048	-0,048	0,046	0,046	0,048	0,048	-0,048	-0,097	-0,048	-0,097	0,091	0,117
300	-0,048	-0,048	0,046	0,046	0,048	0,048	-0,048	-0,097	-0,048	-0,097	0,091	0,117
350	-0,053	-0,053	0,051	0,051	0,053	0,053	-0,053	-0,107	-0,053	-0,107	0,102	0,127
400	-0,053	-0,053	0,051	0,051	0,053	0,053	-0,053	-0,107	-0,053	-0,107	0,102	0,127

^{*} Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik.

Abmessungen in mm.

Toleranz der Gesamtlagerbreite

– Gepaarte Type A Lager:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung
Toleranz der Lagerbreite

– Einzellager Typ C, X, A:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung

+0,000 -0,254 +0,000 -0,508

+0,000 -0,127 +0,000 -0,254

Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.

Toleranzklassen und empfohlene Passungen für ENDURA-SLIM® Kugellager

TYP	C, X, I	JND A	MIT E	NDURA	AKOTE	BESC	CHICH	TUNG	- TOL	ERANZ	ZKLAS	SE 3
	Lage	er-Ø		& Axial nlag	Rotierend	de Welle		Steheno	le Welle			iales
Lager- größe (Zoll Serie)	Bohrung Nominal +0,000	Bohrung Außen- Nominal +0,000	Innenring	Außenring	Wellen-Ø Nominal +0,000	Gehäuse- bohrung Nominal +0,000	Welld Non	en-Ø ninal		ebohrung ninal		spiel* X und C) ontage
10	-0,010	-0,013	0,008	0,010	0,010	0,013	-0,010	-0,020	-0,013	-0,025	0,018	0,028
15	-0,013	-0,013	0,010	0,010	0,013	0,013	-0,013	-0,025	-0,013	-0,025	0,020	0,030
17	-0,015	-0,015	0,010	0,013	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,020	0,046
20	-0,015	-0,015	0,010	0,013	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,020	0,046
25	-0,015	-0,015	0,010	0,013	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,020	0,046
30	-0,015	-0,015	0,010	0,015	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,020	0,046
35	-0,018	-0,015	0,013	0,015	0,018	0,015	-0,018	-0,036	-0,015	-0,030	0,025	0,051
40	-0,018	-0,015	0,013	0,015	0,018	0,015	-0,018	-0,036	-0,015	-0,030	0,025	0,051
42	-0,018	-0,018	0,013	0,020	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,051
45	-0,018	-0,018	0,013	0,020	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,051
47	-0,020	-0,018	0,015	0,020	0,020	0,018	-0,020	-0,041	-0,018	-0,036	0,030	0,056
50	-0,020	-0,018	0,015	0,020	0,020	0,018	-0,020	-0,041	-0,018	-0,036	0,030	0,056
55	-0,020	-0,020	0,015	0,023	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,030	0,056
60	-0,020	-0,020	0,015	0,023	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,030	0,056
65	-0,020	-0,020	0,015	0,023	0,020	0,020	-0,020	-0,041	-0,020	-0,041	0,030	0,056
70	-0,020	-0,023	0,015	0,025	0,020	0,023	-0,020	-0,041	-0,023	-0,046	0,036	0,061
75	-0,023	-0,023	0,020	0,025	0,023	0,023	-0,023	-0,046	-0,023	-0,046	0,036	0,061
80	-0,023	-0,023	0,020	0,025	0,023	0,023	-0,023	-0,046	-0,023	-0,046	0,036	0,061
90	-0,023	-0,023	0,020	0,025	0,023	0,023	-0,023	-0,046	-0,023	-0,046	0,036	0,061
100	-0,025	-0,025	0,025	0,030	0,025	0,025	-0,025	-0,051	-0,025	-0,051	0,041	0,066
110	-0,025	-0,025	0,025	0,030	0,025	0,025	-0,025	-0,051	-0,025	-0,051	0,041	0,066
120	-0,025	-0,028	0,025	0,036	0,025	0,028	-0,025	-0,051	-0,028	-0,056	0,046	0,071
140	-0,025	-0,028	0,030	0,036	0,025	0,028	-0,025	-0,051	-0,028	-0,056	0,046	0,071
160	-0,028	-0,030	0,036	0,041	0,028	0,030	-0,028	-0,056	-0,030	-0,061	0,051	0,076
180	-0,028	-0,030	0,036	0,041	0,028	0,030	-0,028	-0,056	-0,030	-0,061	0,051	0,076
200	-0,030	-0,036	0,041	0,046	0,030	0,036	-0,030	-0,061	-0,036	-0,071	0,061	0,086

Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.

Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik. Toleranz der Gesamtlagerbreite – Gepaarte Type A Lager:

bis zu 12" Lagerbohrung über 12" Lagerbohrung

Toleranz der Lagerborirung
Toleranz der Lagerbreite
– Einzellager Typ C, X, A:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung

+0,000 -0,254 +0,000 -0,508

+0,000 -0,127 +0,000 -0,254

Toleranzklassen und empfohlene Passungen für ENDURA-SLIM® Kugellager

TYI	P C, X	, UND	A MI	T ENI	DURA	KOTE	® BES	СНІСІ	HTUN	G – T	OLER	ANZK	LASS	SE 4
Lager-	Lago	er-Ø		Radial Sch			Rotierenc	le Welle		Stehen	de Welle		Rad	iales
größe (Zoll	Bohrung	Bohrung Außen-Ø	Inne	nring	Auße	nring	Wellen-Ø	Gehäuse- bohrung	Well	en-Ø	Gehäuse	bohruna		spiel* X und C)
Serie)	+0,000	Nominal +0,000	Radial	Axial	Radial	Axial	Nominal +0,000	Nominal +0,000	Non			ninal	vor M	ontage
10	-0,010	-0,010	0,005	0,008	0,005	0,008	0,258	0,010	-0,010	-0,020	-0,010	-0,020	0,013	0,023
15	-0,010	-0,010	0,005	0,008	0,005	0,008	0,258	0,010	-0,010	-0,020	-0,010	-0,020	0,013	0,023
17	-0,013	-0,013	0,005	0,008	0,008	0,010	0,323	0,013	-0,013	-0,025	-0,013	-0,025	0,015	0,030
20	-0,013	-0,013	0,005	0,008	0,008	0,010	0,323	0,013	-0,013	-0,025	-0,013	-0,025	0,015	0,030
25	-0,013	-0,013	0,005	0,008	0,008	0,010	0,323	0,013	-0,013	-0,025	-0,013	-0,025	0,015	0,030
30	-0,013	-0,013	0,005	0,008	0,010	0,013	0,323	0,013	-0,013	-0,025	-0,013	-0,025	0,015	0,030
35	-0,013	-0,013	0,008	0,010	0,010	0,013	0,323	0,013	-0,013	-0,025	-0,013	-0,025	0,015	0,030
40	-0,013	-0,013	0,008	0,010	0,010	0,013	0,323	0,013	-0,013	-0,025	-0,013	-0,025	0,015	0,030
42	-0,013	-0,015	0,008	0,010	0,010	0,013	0,323	0,015	-0,013	-0,025	-0,015	-0,030	0,020	0,036
45	-0,013	-0,015	0,008	0,010	0,010	0,013	0,323	0,015	-0,013	-0,025	-0,015	-0,030	0,020	0,036
47	-0,015	-0,015	0,008	0,010	0,010	0,013	0,387	0,015	-0,015	-0,030	-0,015	-0,030	0,020	0,036
50	-0,015	-0,015	0,008	0,010	0,010	0,013	0,387	0,015	-0,015	-0,030	-0,015	-0,030	0,020	0,036
55	-0,015	-0,018	0,008	0,010	0,013	0,015	0,387	0,018	-0,015	-0,030	-0,018	-0,036	0,025	0,041
60	-0,015	-0,018	0,008	0,010	0,013	0,015	0,387	0,018	-0,015	-0,030	-0,018	-0,036	0,025	0,041
65	-0,015	-0,018	0,008	0,010	0,013	0,015	0,387	0,018	-0,015	-0,030	-0,018	-0,036	0,025	0,041
70	-0,015	-0,018	0,008	0,010	0,013	0,015	0,387	0,018	-0,015	-0,030	-0,018	-0,036	0,025	0,041
75	-0,018	-0,018	0,010	0,013	0,013	0,015	0,452	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,041
80	-0,018	-0,018	0,010	0,013	0,013	0,015	0,452	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,041
90	-0,018	-0,018	0,010	0,013	0,013	0,015	0,452	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,041
100	-0,018	-0,018	0,013	0,015	0,015	0,018	0,452	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,041
110	-0,018	-0,018	0,013	0,015	0,015	0,018	0,452	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,041
120	-0,018	-0,020	0,013	0,015	0,018	0,020	0,452	0,020	-0,018	-0,036	-0,020	-0,041	0,030	0,046
140	-0,020	-0,020	0,013	0,018	0,018	0,020	0,516	0,020	-0,020	-0,041	-0,020	-0,041	0,030	0,046
160	-0,020	-0,023	0,018	0,020	0,020	0,023	0,516	0,023	-0,020	-0,041	-0,023	-0,046	0,036	0,051
180	-0,020	-0,023	0,018	0,020	0,020	0,023	0,516	0,023	-0,020	-0,041	-0,023	-0,046	0,036	0,051
200	-0,023	-0,025	0,020	0,023	0,023	0,025	0,581	0,025	-0,023	-0,046	-0,025	-0,051	0,041	0,056

^{*} Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.

Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik.

Abmessungen in mm.

Toleranz der Gesamtlagerbreite

– Gepaarte Type A Lager:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung

Toleranz der Lagerborirung
Toleranz der Lagerbreite
– Einzellager Typ C, X, A:
bis zu 12" Lagerbohrung
über 12" Lagerbohrung

+0,000 -0,254 +0,000 -0,508

+0,000 -0,127 +0,000 -0,254

Toleranzklassen und empfohlene Passungen für ENDURA-SLIM® Kugellager

TYP	C, X, l	JND A	MIT E	NDURA	AKOTE	BESC	HICH	TUNG	– TOL	ERAN	ZKLAS	SE 6
	Lago	er-Ø		& Axial nlag	Rotieren	de Welle		Stehen	de Welle			iales
Lager- größe (Zoll Serie)	Bohrung Nominal +0,000	Bohrung Außen-Ø Nominal +0,000	Innenring	Außenring	Wellen-Ø Nominal +0,000	Gehäuse- bohrung Nominal +0,000		en-Ø ninal		ebohrung ninal	(nur Typ	rspiel* X und C) ontage
10	-0,009	-0,010	0,004	0,005	0,009	0,010	-0,009	-0,018	-0,010	-0,020	0,010	0,020
15	-0,010	-0,010	0,004	0,005	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,010	0,020
17	-0,010	-0,010	0,004	0,005	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,010	0,025
20	-0,010	-0,010	0,004	0,005	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,010	0,025
25	-0,010	-0,010	0,004	0,005	0,010	0,010	-0,010	-0,020	-0,010	-0,020	0,010	0,025
30	-0,010	-0,013	0,004	0,005	0,010	0,013	-0,010	-0,020	-0,013	-0,025	0,015	0,030
35	-0,011	-0,013	0,005	0,005	0,011	0,013	-0,011	-0,023	-0,013	-0,025	0,015	0,030
40	-0,011	-0,013	0,005	0,005	0,011	0,013	-0,011	-0,023	-0,013	-0,025	0,015	0,030
42	-0,011	-0,015	0,005	0,008	0,011	0,015	-0,011	-0,023	-0,015	-0,030	0,020	0,036
45	-0,011	-0,015	0,005	0,008	0,011	0,015	-0,011	-0,023	-0,015	-0,030	0,020	0,036
47	-0,013	-0,015	0,008	0,008	0,013	0,015	-0,013	-0,025	-0,015	-0,030	0,020	0,036
50	-0,013	-0,015	0,008	0,008	0,013	0,015	-0,013	-0,025	-0,015	-0,030	0,020	0,036
55	-0,013	-0,015	0,008	0,008	0,013	0,015	-0,013	-0,025	-0,015	-0,030	0,020	0,036
60	-0,013	-0,015	0,008	0,008	0,013	0,015	-0,013	-0,025	-0,015	-0,030	0,020	0,036
65	-0,013	-0,015	0,008	0,008	0,013	0,015	-0,013	-0,025	-0,015	-0,030	0,020	0,036
70	-0,013	-0,015	0,008	0,010	0,013	0,015	-0,013	-0,025	-0,015	-0,030	0,020	0,036
75	-0,015	-0,015	0,008	0,010	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,020	0,036
80	-0,015	-0,015	0,008	0,010	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,020	0,036
90	-0,015	-0,015	0,008	0,010	0,015	0,015	-0,015	-0,030	-0,015	-0,030	0,020	0,036
100	-0,018	-0,018	0,010	0,010	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,041
110	-0,018	-0,018	0,010	0,010	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,041
120	-0,018	-0,018	0,010	0,013	0,018	0,018	-0,018	-0,036	-0,018	-0,036	0,025	0,041
140	-0,018	-0,020	0,010	0,013	0,018	0,020	-0,018	-0,036	-0,020	-0,041	0,030	0,046

Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.
Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik. Toleranz der Gesamtlagerbreite - Gepaarte Type A Lager: bis zu 12" Lagerbohrung über 12" Lagerbohrung

uber 12" Lagerbohrung Toleranz der Lagerbreite – Einzellager Typ C, X, A: bis zu 12" Lagerbohrung über 12" Lagerbohrung

+0,000 -0,127 +0,000 -0,254

+0,000 -0,254 +0,000 -0,508

Toleranzklassen und empfohlenen Passungen für REALI-SLIM MM™ Lager Metrische Serie

auf den Seiten 54 bis 59

		KAYD	ON TO	LERAI	NZKLAS	SSE 1	FÜR T	YP A,	C, X L	AGER		
	Lago	er-Ø		& Axial nlag	Rotieren	de Welle		Stehen	de Welle		Radi	alec
Lager- größe (MM Serie)	Bohrung Nominal +0,000	Bohrung Außen-Ø Nominal +0,000	Innenring	Außenring	Wellen-Ø Nominal +0,000	Gehäuse- bohrung Nominal +0,000		en-Ø ninal		ebohrung ninal		spiel*
020	-0,010	-0,010	0,008	0,010	+0,010	+0,010	-0,010	-0,020	-0,010	-0,020	0,025	0,038
025	-0,010	-0,010	0,008	0,010	+0,010	+0,010	-0,010	-0,020	-0,010	0,020	0,025	0,038
050	-0,012	-0,013	0,013	0,013	+0,012	+0,013	-0,012	-0,024	-0,013	-0,026	0,030	0,056
060	-0,015	-0,013	0,013	0,013	+0,015	+0,013	-0,015	-0,030	-0,015	-0,030	0,030	0,056
070	-0,015	-0,015	0,015	0,015	+0,015	+0,015	-0,015	-0,030	-0,015	-0,030	0,030	0,056
080	-0,015	-0,015	0,015	0,015	+0,015	+0,015	-0,015	-0,030	-0,015	-0,030	0,030	0,056
090	-0,020	-0,015	0,015	0,015	+0,020	+0,015	-0,020	-0,040	-0,020	-0,040	0,041	0,066
100	-0,020	-0,015	0,015	0,015	+0,020	+0,015	-0,020	-0,040	-0,020	-0,040	0,041	0,066
110	-0,020	-0,018	0,015	0,020	+0,020	+0,018	-0,020	-0,040	-0,020	-0,040	0,041	0,066
120	-0,020	-0,018	0,020	0,020	+0,020	+0,018	-0,020	-0,036	-0,020	-0,036	0,041	0,066
130	-0,025	-0,018	0,025	0,025	+0,025	+0,018	-0,025	-0,051	-0,018	-0,036	0,051	0,076
140	-0,025	-0,025	0,025	0,025	+0,025	+0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,076
150	-0,025	-0,025	0,025	0,025	+0,025	+0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,076
160	-0,025	-0,025	0,025	0,025	+0,025	+0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,076
170	-0,025	-0,025	0,025	0,025	+0,025	+0,025	-0,025	-0,051	-0,025	-0,051	0,051	0,076
180	-0,025	-0,030	0,025	0,025	+0,025	+0,030	-0,025	-0,051	-0,030	-0,061	0,051	0,076
190	-0,025	-0,030	0,025	0,025	+0,025	+0,030	-0,025	-0,051	-0,030	-0,061	0,051	0,076
200	-0,030	-0,030	0,030	0,030	+0,030	+0,030	-0,030	-0,061	-0,030	-0,061	0,061	0,086
250	-0,036	-0,036	0,046	0,051	+0,036	+0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,100
300	-0,036	-0,036	0,046	0,051	+0,036	+0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,100
320	-0,036	-0,036	0,046	0,051	+0,036	+0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,100
340	-0,036	-0,036	0,046	0,051	+0,036	+0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,100
360	-0,036	-0,036	0,046	0,051	+0,036	+0,036	-0,036	-0,071	-0,036	-0,071	0,071	0,100

^{*} Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind.

 $\label{thm:continuous} \mbox{Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden.}$

Die o.g. Wellen- und Gehäusedurchmesser gelten für Umbauteile aus Stahl mit Standardlagerspiel Die empfohlenen Wellenund Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik. Toleranz der Gesamtlagerbreite – Gepaarte Type A Lager: bis zu 300 mm Lagerbohrung über 300 mm Lagerbohrung Toleranz der Lagerbreite

leranz der Lagerbreite
– Einzellager Typ C, X, A:
bis zu 300 mm Lagerbohrung
über 300 mm Lagerbohrung

+0,000 -0,254 +0,000 -0,508

+0,000 -0,127 +0,000 -0,254

Toleranzklassen und empfohlene Passungen für **ULTRA-SLIM**[™] Lager

auf Seite 61

	KAYDON TOLERANZKLASSE 1 FÜR TYP A, C, X LAGER									
Lager- größe	① Bohrung und Außen-Ø		ial und ındlauf- anzen	Rotieren	nde Welle	Stehen	Radiales Lagerspiel* (nur Typ X und C) vor Montage			
(MM Serie)	Toleranz Nominal +0.000	Nominal Innen- Außen- Wellen-Ø Nominal		Nominal	Gehäusebohrung Nominal +0,000	Wellen-Ø Nominal				Gehäusebohrung Nominal
035	-0,013	0,010	0,010	35 +0,013/-0,000	41 +0,013/-0,000	34,987 +0,000/-0,013	40,987 +0,000/-0,013	0,030	0,046	
060	-0,013	0,013	0,013	60 +0,013/-0,000	66 +0,013/-0,000	59,987 +0,000/-0,013	65,987 +0,000/-0,013	0,030	0,046	
070	-0,013	0,015	0,015	70 +0,013/-0,000	76 +0,013/-0,000	69,987 +0,000/-0,013	75,987 +0,000/-0,013	0,030	0,046	
074	-0,013	0,015	0,015	74 +0,013/-0,000	80 +0,013/-0,000	73,987 +0,000/-0,013	79,987 +0,000/-0,013	0,030	0,046	
080	-0,013	0,015	0,015	80 +0,013/-0,000	86 +0,013/-0,000	79,987 +0,000/-0,013	85,987 +0,000/-0,013	0,030	0,046	
090	-0,013	0,015	0,015	90 +0,013/-0,000	96 +0,013/-0,000	89,987 +0,000/-0,013	95,987 +0,000/-0,013	0,030	0,046	
100	-0,013	0,015	0,015	100 +0,013/-0,000	106 +0,013/-0,000	99,987 +0,000/-0,013	105,987 +0,000/-0,013	0,030	0,046	
110	-0,013	0,020	0,020	110 +0,013/-0,000	116 +0,013/-0,000	109,987 +0,000/-0,013	115,987 +0,000/-0,013	0,030	0,046	
120	-0,013	0,020	0,020	120 +0,013/-0,000	126 +0,013/-0,000	119,987 +0,000/-0,013	125,987 +0,000/-0,013	0,030	0,046	
130	-0,013	0,020	0,020	130 +0,013/-0,000	136 +0,013/-0,000	129,987 +0,000/-0,013	135,987 +0,000/-0,013	0,030	0,046	
140	-0,013	0,025	0,025	140 +0,013/-0,000	146 +0,013/-0,000	139,987 +0,000/-0,013	145,987 +0,000/-0,013	0,030	0,046	
150	-0,013	0,025	0,025	150 +0,013/-0,000	156 +0,013/-0,000	149,987 +0,000/-0,013	155,987 +0,000/-0,013	0,030	0,046	
160	-0,013	0,025	0,025	160 +0,013/-0,000	166 +0,013/-0,000	159,987 +0,000/-0,013	165,987 +0,000/-0,013	0,030	0,046	
170	-0,013	0,025	0,025	170 +0,013/-0,000	176 +0,013/-0,000	169,987 +0,000/-0,013	175,987 +0,000/-0,013	0,030	0,046	

① Diese Toleranz ergibt sich als Durchschnittswert aus mehreren Messungen am entsprechenden Durchmesser. Aufgrund der dünnen, flexiblen Querschnitte der Laufbahnkomponenten ist eine Mehrpunktmessung notwendig.

② Die Werte der Rundlauf- und Planlaufabweichungen beziehen sich auf die einzelnen Lagerringe.

Die o.g. Wellen- und Gehäusedurchmesser gelten für Stahlumbau ... mit Standardlagerspiel Die empfohlenen Wellen- und Gehäusedurchmesser können durch Einbaulage, Temperatur, Drehzahlen, kein Standardspiel usw. abweichen. Für weitere Informationen kontaktieren Sie unsere Anwendungstechnik.

Abmessungen in mm.

- Einzellager Typ C, X, A: Alle Größen

+0,000 -0,127

Theoretisch kann das Lagerspiel nach dem Einbau von den Angaben abweichen, wenn die Lager-, Gehäuse- und Wellentoleranzen auf beiden Seiten ihrer Extremwerte liegen. Die aufgeführten Werte sind Ergebnisse, die nach den Gesetzen der Wahrscheinlichkeit zu erwarten sind. Das angegebene Lagerspiel kann nicht auf Lager vom Typ A (Schrägkugellager) angewendet werden

Käfigtypen, Kugelanzahl, Belastungsdaten

Auflistung der Katigtypen, die in REALI-SLIM® Lagern Einsatz finden	93
Käfigtypen	94
Kugelanzahl in Standard REALI-SLIM® Lagern	97
Grenzdrehzahlen	98
Drehmoment	100
Startmoment unter Last	101
Axiale Abweichung	102
Axialspiel / Lagerspiel	103
Verformungskurven	104

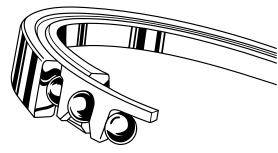
Auflistung der Käfigtypen, die in REALI-SLIM® Lagern Einsatz finden

Code*	Beschreibung	Besonderheiten	Einsatzbedingungen	Material	Design					
Р	Standard- Schnappkäfig	Standard Kugelkäfig. Für Typ C und X Lager, von "KA" bis "KG" Querschnitt.	Kommerzieller Käfigtyp, nicht empfohlen für Anwendungen mit geringen Momenten. Rücksprache mit uns bei Temperaturen unter -54°C und über 121°C.	Messing oder nichtmetallisches Material	MM					
R	Standard- Kugeltaschenkäfig	Standard Kugelkäfig. Für Typ A Lager, von "KA" bis "KG" Querschnitt.	Kommerzieller Käfigtyp, nicht empfohlen für Anwendungen mit geringen Momenten. Rücksprache mit uns bei Temperaturen unter -54°C und über 121°C.	Messing oder nichtmetallisches Material	[000]					
L	Einteiliger Schnappkäfig	Standard Kugelkäfig. Für Typ C und X Lager, für "KAA" Querschnitt	Rücksprache mit uns bei Temperaturen unter -54°C und über 121°C.	Nylon. Verstärktes Fiberglass						
G	Einteiliger Kugeltaschenkäfig	Standard Kugelkäfig. Für Typ A Lager, für "KAA" Querschnitt.	Rücksprache mit uns bei Temperaturen unter -54°C und über 121°C.	Nylon. Verstärktes Fiberglass	(000)					
D	Einteiliger Schnappkäfig	Standard Kugelkäfig. Für Typ C und X Lager, für Anwendungen, bei denen geringen Momente, geringes Gewicht oder Vacuumbeständigkeit gefordert sind.	Nicht empfohlen über 121°C. Längere Lieferzeit und teurer als "P" Käfige.	Phenolharzlaminat.						
н	Einteiliger Kugeltaschenkäfig	Standard Kugelkäfig. Für Typ A Lager, für Anwendungen, bei denen geringen Momente, geringes Gewicht oder Vacuumbeständigkeit gefordert sind.	Nicht empfohlen über 121°C. Längere Lieferzeit und teurer als "R" Käfige. Wenn möglich Toroiddistanzringe einsetzen.	Phenolharzlaminat.	(000)					
N	Schnappkäfig	Etwas höhere Kugelanzahl für Typ C und X Lager. Verfügbar für alle Durchmesser ab 4 Zoll	Gefahr von Käfigbandschäden durch überstehende Lager/Gehäuseteile. Maximale Betriebstemperatur 82,2°C	PA 12	ninin					
J	Kugeltaschenkäfig- Band	Etwas höhere Kugelanzahl für Typ A Lager. Verfügbar für alle Durchmesser ab 4 Zoll	Maximale Betriebstemperatur 82,2°C	PA 12						
x	Peek-Schnappkäfig	Excellent für Vacuum	Begrenzte Verfügbarkeit	PEEK						
Q	Peek- Kugeltaschenkäfig	Excellent für Vacuum	Begrenzte Verfügbarkeit	PEEK						
М	Draht-Schnappkäfig als Band oder Segment	Höhere Kugelanzahl. Für Typ A, C und X Lager. Für höhere Belastung (ca. 150%) und höhere Temperaturen.	Höheres Laufmoment und geringere Drehzahlen als bei "R" Käfigen. Relativ hoher Verschleiß. Benötigt eine Füllnut für "C" und "X" Lager.	17-7 PH Edelstahl	ALLE B					
w	Draht-Schnappkäfig als Band oder Segment	Für Typ C und X Lager. Für höhere Temperaturen. Standard Kugelsortierung	Höheres Laufmoment und geringere Drehzahlen als bei "R" Käfigen. Relativ hoher Verschleiß.	17-7 PH 17-7 PH Edelstahl	ATHER.					
F	Vollkugelig – kein Käfig	Max. Kugelanzahl. Für Typ A, C und X Lager maximale Belastung und Steifigkeit.	Hohes Laufmoment und geringe Drehzahl wegen Kugelreibung. Nicht empfohlen für dynamische Arnwendungen Benötigt eine Füllnut für "C" und "X" Lager.	Stahl (Per ABMA Standard 10).						
s	Helical coil Spiralfedern	Reduzierte Kugelanzahl. Für Typ C und X Lager. Für geringes Laufmoment und hohe Temperaturen.	Hohe Herstellkosten. Sollte nur eingesetzt werden, wenn PTFE Distanzröhrchen nicht verwendet werden können. Nur für langsame Drehzahl und geringe Lasten.	300 Serie Edelstahl.						
z	Distanzhalter	Standard Kugelanzahl. Für Typ C oder X Lager. Für geringes Laufmoment. Verhindert Käfigverwindungen.	Nicht empfohlen für Temperaturen über 121°C oder Geschwindigkeiten von 2,54 m/s am Laufkreis (Beispiel: KA040CZ0 max. 450 U/min).	PTFE Schlauch						
z	Distanzringe	Erhöhte Kugelanzahl. Für Typ A Lager für geringes Laufmoment. Verhindert Käfigverwindungen.	Nicht empfohlen für Geschwindigkeiten von 2,54 m/s am Laufkreis. PTFE ist beschränkt auf 121°C Vespel® ist beschränkt auf 260°C.	PTFE oder Vespel® SP-1 Polyamid Kunststoff.	00000					
z	Distanzkugeln	Benötigt eine Füllnut bei C und X Lagern. Für geringe Drehzahlen. Relativ hohes Laufmoment.	Erhöhte Kugelanzahl. Für Typ A Lager. Für geringes Laufmoment. Verhindert Käfigverwindungen	Stahl (Per ABMA Standard 10). Distanzkugeln kleiner als Tragkugeln	0000000					

^{*}Code entspricht der Position 7 des Lagerbestellschlüssels - siehe Seite 13

Käfigtypen

Die prinzipielle Funktion eines Käfigs besteht darin, die Rollelemente des Lagers in einer bestimmten Position zu halten, und gleichzeitig Berührung zwischen ihnen zu vermeiden. Leichte Abweichungen in den Bewegungen der einzelnen Rollelemente werden durch unterschiedliche Belastungen der Rollelemente sowie die unterschiedliche Elastizität / Verformungen von Rollelementen und Lagerringen verursacht. Ohne Käfig können sich die Rollelemente eventuell berühren.


Durch die Form der Rollelemente und die entgegengesetzte Bewegung der Kontaktfläche kann es bei hohen Drehzahlen bei Lagersystemen ohne Käfig zu hoher Kontaktreibung zwischen den Rollelementen kommen. Hierdurch entsteht ein starker Verschleiß der Rollelemente, deren Rückstände auf den Laufflächen die Lebensdauer und die Laufeigenschaften des Lagers beeinflussen, so dass sich der Einsatz von vollkugeligen/vollrolligen Lagern auf relativ niedrige Drehzahlen beschränkt. Der Einsatz eines Käfigsystems reduziert den Verschleiß auf ein Minimum, so dass die Lager auch bei voller Auslastung und höheren Geschwindigkeiten verwendbar sind.

Die Käfige der REALI-SLIM® Lager werden durch die Buchstaben P, R, L oder G in der Artikelnummer unterschieden und sind für viele Anwendungsgebiete bestens geeignet. Trotzdem kann in vielen Fällen der Einsatz eines Spezialkäfigs erforderlich sein, wodurch sich allerdings die Belastbarkeit des Lagers ändert.

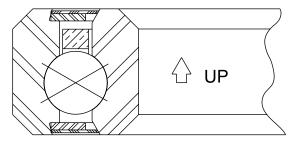
Zur Unterstützung bei der REALI-SLIM® Lagerauswahl wenden Sie sich an unsere Anwendungstechnik. Die Einsatztemperaturen für die unterschiedlichen Käfigmaterialien finden Sie auf Seite 93.

Geschlossener Schnappkäfig

Bild 4-1 - Schnappkäfig

Diese Käfige wurden für den Einsatz in den Lagertypen C und X entwickelt und werden nach der "Conrad"-Montage von Kugeln und Lagerringen eingesetzt. Bei Raumtemperatur montiert, kann es bei sehr großen Temperaturänderungen durch die verschiedenen Ausdehnungskoeffizienten zu Reibung entweder am Außen- oder am Innenring kommen.

Rundheit und präzise Wandstärken garantieren in jedem Fall saubere Führung, verringern die Reibung zwischen Käfig und Laufflächen, und erlauben einen leichten Lauf. Verschiedene Materialien wie Edelstahl, nichtmetallische Materialien wie Phenolharzlaminat, PTFE und PEEK sind für außergewöhnliche Einsatzbedingungen erhältlich


- Edelstahlkäfige werden als korrosionsbeständiges Material in Edelstahllagern oder Hochtemperaturanwendungen verwendet.
- Phenolharzlaminat wird dort eingesetzt, wo geringes Gewicht und/oder Schmiermittelabsorption gewünscht ist.
- Der nichtmetallische Schnappkäfig ist ideal für Hochgeschwindigkeitsanwendungen in Lagern, deren Querschnitt für einen geteilten Ring zu klein ist (Lagerserie C und kleine Querschnitte). Er ist auch für langsame Anwendungen mit geringen Momenten geeignet.

Für weitere Informationen zu Einsatz von Lagern wenden Sie sich an unsere Anwendungstechnik.

Lagerausrichtung

Bei Anwendungen in denen die Rotationsachse bis 45° zur Vertikalen liegt, wird empfohlen, den Käfig so zu montieren, dass die Taschenöffnungen nach unten liegen oder das Anschlussmaß der Welle bzw. des Gehäuses muss so erweitert werden, dass ein Herauswandern des Käfigs verhindert wird. Gedichtete und gedeckelte Lager haben diesen Montagehinweis als Pfeil mit dem Wort "UP" am Außendurchmesser eingeätzt, wie unten zu sehen ist.

Bild 4-2

Die korrekte Einbaulage wird gezeigt.

Käfigtypen (Fortsetzung)

Geschlossene Käfigringe

Bild 4-3 - Geschlossener Ring mit Kugeltaschen

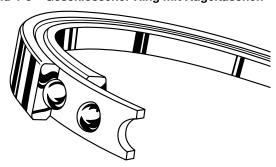
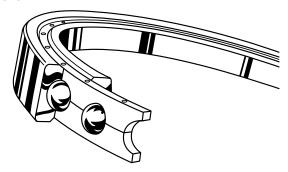



Bild 4-4 – 2-teiliger geschlossener Ring mit Kugeltaschen

Der Vollringkäfig für Lagertyp A ist aus einem Stück hergestellt und wird mit den Kugeln um den inneren Ring herum platziert, anschließend wird der äußere Ring erwärmt und über die Kugeln gezogen. Diese Montagemethode erlaubt die Verwendung von mehr Kugeln als bei den Lagertypen X und C. Standardmaterialien sind hier Messing oder Kunststoffe wie z.B. verstärktes Nylon. Zusätzlich sind Ausführungen in Phenol-Laminat, Edelstahl und Aluminium lieferbar.

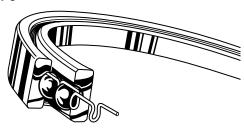
Der dargestellte zweiteilig genietete Käfig dient für die Sonderlagertypen C und X. Er wird nach dem Zusammensetzen von Lager und Kugeln eingebaut und vernietet. Durch den Platzbedarf für die Nieten beschränkt sich der Einsatz dieser Käfige auf die Typen ab Querschnittsgröße D und größer. Gewöhnlich wird dieser Typ in Verbindung mit Phenol-Laminat für sehr hohe Geschwindigkeiten eingesetzt. Bei hohen Festigkeitsanforderungen werden Käfige aus Bronze, Aluminium oder Edelstahl verwendet.

Wie bei den Schnappkäfig-Typen gilt auch hier, dass die Käfige bei Raumtemperaturen über der Kugelmitte zentriert montiert werden und es bei sehr hohen Temperaturschwankungen zu Reibung am äußeren oder inneren Lagerring kommen kann.

Segmentkäfige

Segmentkäfige, gleich ob Ring- oder Schnappkäfig-Version, bieten für bestimmte Anwendungen Vorteile.

- Bei Lagern mit großen Durchmessern, welche unter hoher Temperatureinwirkung laufen, kann die Ausdehnung zwischen Käfig und Laufring das gegebene normale Spiel überschreiten.
- Oszillierende Bewegungen und wechselnde Lasten kombiniert auf einer senkrechten Achse verursachen unterschiedliche Kugelgeschwindigkeiten, was zu einem zu hohen oder unkalkulierbaren Drehmoment führen kann.

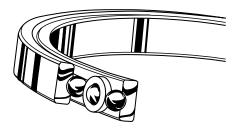

Ein Segmentkäfig kann aus einem einteiligen offenen Ring oder aus zwei oder mehr Teilen bestehen. Wo differentiale Ausdehnung ein Problem ist, wird genügend Spiel zwischen den offenen Enden des Rings bzw. zwischen den einzelnen Segmenten geschaffen, um diese Ausdehnung zu kompensieren. Wo das Drehmoment einen wichtigen Faktor darstellt, basiert die Anzahl der einzelnen Segmente auf Erfahrungswerten. In allen anderen Fällen stellen Segmentkäfige für oben beschriebene Fälle die ideale Lösung dar - sowohl als Schnappkäfig als auch als geschlossener Kugeltaschenkäfig.

Das Teilen des Käfigs führt natürlich auch zu kleineren Einschränkungen des Lagers. Die Höchstdrehzahl wird reduziert, da die Zentrifugalkraft die Segmente wie ein "Bremsband" gegen die äußeren Laufflächen drückt. Auch im Falle des Schnappkäfigs sollten Welle oder Gehäuseschulter vergrößert werden, um das Zurückhalten des Käfigs ungeachtet der Position des Lagers sicherzustellen. Siehe nächste Seite

Käfigtypen (Fortsetzung)

Geformter Drahtkäfig

Bild 4-5


Wenn maximale Tragfähigkeit und höchstzulässige Kugelanzahl erforderlich sind, ist ein geformter Drahtkäfig die ideale Lösung, um die Nachteile eines normalerweise eingesetzten vollkugeligen Lagers zu umgehen. Dieser Käfig hat sich in Schrägkugellagern (Typ A), in die eine größere Kugelanzahl ohne Füllnut eingefädelt werden kann, bewährt. Der Einsatz in Rillenkugellagern (Typ C) oder Vierpunktlagern (Typ X) sollte sich auf Anwendungen mit geringer Drehzahl beschränken.

Die vergleichsweise hohe Verschleißrate kombiniert mit relativ kleinem Querschnitt kann dazu führen, dass speziell bei hohen Lasten der Ermüdungsfaktor des Drahtkäfigs die Lebensdauer des Lagers negativ beeinflusst. Wo Gewicht, Platz und Tragfähigkeit wichtig sind, stellt dieser Käfig einen guten Kompromiss dar.

Ein Lager mit einem Drahtkäfig und maximaler Kugelfüllung hat eine statische Tragfähigkeit von 180% der im Katalog angegebenen Werte.

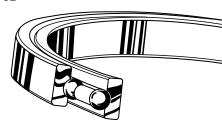

Toroid Käfig

Bild 4-6A

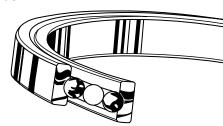

PTFE Distanzhalter

Bild 4-6B

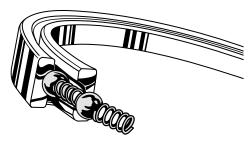

Distanzkugeln

Bild 4-6C

Spiralfedern

Bild 4-6D

In einigen kritischen Anwendungen ist die Gleichmäßigkeit des Drehmoments wichtiger als seine tatsächlichen Istwerte. Spezielle "Toroids" (Bild 4-6A), PTFE Distanzhalter (Bild 4-6B), Distanzkugeln (Bild 4-6C) oder "Helical" Spiralfedern (Bild 4-6D) haben sich in einer Vielzahl solcher Anwendungen als äußerst zuverlässig für die Separierung der Kugeln erwiesen. Sie ermöglichen den Kugeln auf Grund Ihrer Art individuellen, wie auch kumulativen Freiraum. Um jedoch Fehler durch diesen Freiraum zu vermeiden, müssen Geschwindigkeit und Lasten vergleichsweise gering sein.

Wenn diese Käfige eingesetzt werden sollen, wenden Sie sich zur Überprüfung und für weitere Hinweise an unsere Anwendungstechnik.

Kugelanzahl in Standard REALI-SLIM® Lagern

Bild 4-7

				Тур А			Typen C und X									
Bohrung	KAA	KA	KB	КС	KD	KF	KG	KAA	KA	КВ	КС	KD	KF	KG		
010	28							21								
015	40							29								
017	44							33								
020		36	31						27	23						
025		44	38						33	28						
030		52	44						39	33						
035		60	51						45	38						
040		68	58	49	36	26	20		51	43	35	27	19	15		
042		72	61	52	38	27	21		54	45	37	28	20	15		
045		76	64	55	40	29	22		57	48	39	30	21	16		
047		80	68	58	42	30	23		60	50	41	31	22	17		
050		84	71	61	44	31	24		63	53	43	33	23	18		
055		92	78	66	48	34	26		69	58	47	36	25	19		
060		100	85	72	52	37	28		75	63	51	39	27	21		
065		108	91	78	56	40	30		81	68	55	42	29	22		
070		116	98	83	60	43	32		87	73	59	45	31	24		
075		124	105	89	64	45	34		93	78	63	48	33	25		
080		132	112	95	68	48	36		99	83	67	51	35	27		
090		148	125	106	76	54	40		111	93	75	57	39	30		
100		164	139	118	84	59	44		123	103	83	63	43	33		
110		180	152	129	92	65	48		135	113	91	69	47	36		
120		196	166	140	100	70	52		147	123	99	75	51	39		
140			192	163	116	81	60			143	115	87	59	45		
160			219	186	132	92	68			163	131	99	67	51		
180			246	209	148	104	76			183	147	111	75	57		
200			273	231	164	115	84			203	163	123	83	63		
210					172							129				
220							92							69		
250				288	204	142	104				203	153	103	78		
300				345	244	170	124				243	183	123	93		
350						198	144						143	108		
400						226	164						163	123		

Grenzdrehzahlen

Die folgenden Information über Grenzdrehzahlen dienen nur als Referenz. Die tatsächlichen Daten entnehmen Sie bitte der REALI-DESIGN™ Software, zu erhalten unter www.kaydonbearings.com.

Die Bestimmung der höchstzulässigen Drehzahl stützt sich im wesentlichen auf Erfahrungswerte. Die Grenzdrehzahl wird durch eine Reihe komplexer Faktoren beeinflusst:

- Bohrungsdurchmesser
- Verhältnis des Bohrungsdurchmessers zum Querschnitt
- Lagerbauform und innere Struktur
- Verhältnis von Laufbahnradius zu Kugeldurchmesser
- Vorspannung, Lagerluft
- Druckwinkel
- Maßgenauigkeit (Rundlaufgenauigkeit)
- Konstruktion und Werkstoff des Kugelkäfigs
- Einbaugenauigkeit (Rundheit, Rundlauf unter Last)
- Schmierung
- Umgebungstemperatur und Wärmeableitung
- Dichtungen
- Belastungen
- Lebensdauererwartung

Es können zwar keine genauen Grenzdrehzahlen angegeben werden, jedoch dienen die Werte aufgrund der Erfahrungen aus der Praxis und aus den Prüflaboren als Basis für generelle Limits. Bei den in Bild 4-10 angegebenen Daten sind die wesentlichen Faktoren berücksichtigt. Sie sind jedoch nur dann aussagekräftig, wenn der Einbau sachgemäß durchgeführt wird und für eine angemessene Wärmeableitung gesorgt wird. Die Grenzzahlen sind für eine Lebensdauer von 1.000.000 Umdrehungen ausgelegt. Falls eine geringere Lebensdauer in Kauf genommen werden kann, liegen die Grenzdrehzahlen entsprechend höher. Dies gilt nicht für Lager mit Spiralfeder- oder Drahtkäfigen.

Bei Drehzahlen, die im oberen Bereich der in der Tabelle angegebenen Werte oder darüber liegen, muß auf Schmierung und Erwärmung besonders geachtet werden. Hierbei sollten Fette mit besonderer Eignung für hohe Drehzahlen verwendet werden. Angemessene Nachschmierfristen sollten eingehalten werden, um jederzeit die Schmierung zu gewährleisten. Bei Ölschmierung sollten die hydrodynamischen Verluste durch regelmäßige Kontrollen des Öllevels möglichst klein gehalten werden. Dies geschieht durch Schleuderscheiben und/oder Tropfölschmierung oder Ölnebelschmierung. Schaumbildung bei hohen Drehzahlen kann in kritischen Bereichen Mangelschmierung zur Folge haben. Ablenkungseffekte bei hohen Geschwindigkeiten können die Verteilung auf der kritischen Oberfläche sehr erschweren, daher ist die Konstruktion des Schmiersystems von großer Bedeutung. Bitte kontaktieren Sie Ihren Schmiermittellieferant.

Im allgemeinen ist die Obergrenze der Betriebstemperatur durch die max. zulässige Temperatur des Schmiermittels gesetzt. Falls jedoch über einen längeren Zeitraum mit Lagertemperaturen von über 121°C gerechnet wird, sollte das Lager von Kaydon entsprechend vorbehandelt sein. Danach sind Betriebstemperaturen von bis zu 204°C möglich.

Neben dem Maximalwert der Temperatur ist das mögliche Temperaturgefälle innerhalb des Lagers zu beachten. Im allgemeinen wird die Wärme in stärkerem Maße über das Gehäuse abgeleitet als über die Welle. Die Gehäusepassung und das Lagerspiel müssen vor der Montage ausreichend sein, um eine ausreichende Laufgenauigkeit zu gewährleisten.

Beispiele Grenzdrehzahlberechnung

Beispiel 1 (Standard Lager)

Grenzdrehzahlberechnung für Lagertyp KG040XP0.

Bedingungen: geringe Axiallast (<20%), Fettschmierung.

Aus Bild 4-8: Querschnittssymbol = I

Aus Bild 4-9: Prozentualer Lastanteil (DN-Wert) = 1.0

Aus Bild 4-10: Typ X; Käfig P; Fett; Klasse 1; ergibt = 9

Berechnung: N = $1.0 \times 9 \times 1000 = 2.250$

Beispiel 2 (Hochleistungslager)

Grenzdrehzahlberechnung für Lagertyp KD100AH6.

Bedingungen: Last 25%, Ölschmierung

Aus Bild 4-8: Querschnittssymbol = II

Aus Bild 4-9: Prozentualer Lastanteil (DN-Wert) = 0.9

Aus Bild 4-10: Typ A; Käfig H; Öl; Klasse 6; ergibt = 32

Berechnung: N = $\frac{0.9 \times 32 \times 1000}{10}$ = 2.880

Grenzdrehzahl für ungedichtete leicht belastete REALI-SLIM® Kugellager

Grenzdrehzahl N = $\frac{\text{Fl} \times \text{Cf} \times 1000}{\text{D}}$

wobei

D = Bohrungsdurchmesser Lager

N = U/min

Grenzdrehzahlen (Fortsetzung)

Bild 4-8 - Querschnittssymbol (S_s)

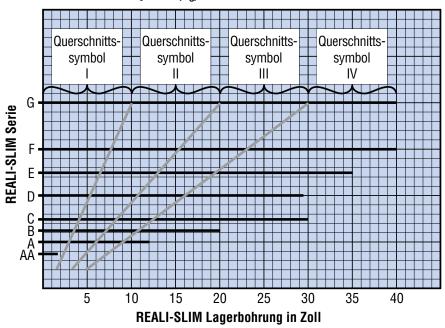


Bild 4-9 - Prozentualer Lastanteil (DN-Wert) (FI)

Prozentualer Lastanteil	dynamischer Multiplikator für DN Wert
20	1,0
33	0,9
50	0,8
67	0,7
100	0,5
150	0,2

Bild 4-10 - Tabellenwert Schmierfaktor (Cf)

			Präzisionsklasse und Schmierung																			
Lagertyp	Lastbedingungen	Käfigtyp	KLASSE 1, 3 & 4													KLAS	SSE 6					
			FETT				ÖL			FETT				ÖL				ÖLNEBEL				
Lagerquerschnittssymbol aus Bild 4-8				II	Ш	IV	T	II	Ш	IV	Τ	II	Ш	IV	T	Ш	III	IV	ı	II	Ш	IV
C mit Lagerspiel	Radial	P, L, X	15	12	9	6	21	18	15	12	21	18	15	12	27	24	21	18	30	27	24	21
		К	20	16	12	8	28	24	20	16	28	24	20	16	36	32	28	24	40	36	32	28
Α	Radial und/oder Axial	R	15	12	9	6	21	18	15	12	21	18	15	12	27	24	21	18	30	27	24	21
Vorgespannt oder axial		G, H	20	16	12	8	28	24	20	16	28	24	20	16	36	32	28	24	40	36	32	28
eingestellt		М	8	6	5	3	11	9	8	6	11	9	8	6	14	12	11	9	15	14	12	11
X mit Lagerspiel	Nur Axial	P, L, X	9	8	7	6	11	10	9	8	11	10	9	8	14	12	11	9	15	14	12	11
	Nur Radial o. kombinierte Belastung	P, L, X	3.0	2.5	2.0	1.5	4	3.5	3	2	4	3.5	3	2	4.5	4	3.5	3	5	4.5	4	3.5

Drehmoment

Momente, wie sie am Lager auftreten, werden definiert als die Momente, die den rotierenden Ring gegenüber dem stehenden Lagerring verdrehen.

Normalerweise sind die Drehmomentanforderungen an ein Kugellager nur ein kleiner Teil der Anforderungen an ein mechanisches System. Bei vielen REALI-SLIM® Lageranwendungen sind die Massen und Massenträgheiten jedoch gering und die zu leistende Arbeit nicht sehr hoch. In solchen Fällen ist es wichtig, die benötigten Drehkräfte so genau wie möglich zu kennen.

Viele Faktoren tragen zum Drehwiederstand eines leicht belasteten Lagers bei. Viele davon sind unberechenbar wie Käfigreibung; Viskosität des Schmiermittels; kleinere Abweichungen vom Sollmaß bei den Kugeln, Laufbahnen, Montageflächen, Wellen und Gehäusen; internes Lagerspiel und mögliche Verunreinigungen.

Lager können gemäß einer Spezifikation für maximales Laufmoment gefertigt werden.

Bei der Auswahl der Schmierung und des Schmiersystems sollten die Auswirkungen auf das Drehmoment berücksichtigt werden. Ebenfalls sollten Betriebstemperaturen, Drehzahlen, der Typ, die Viskosität und die Schmiermittelmenge berücksichtigt werden. Alle diese wichtigen Faktoren bestimmen den Schmiermittelwiederstand. Bitte kontaktieren Sie Ihren Schmiermittellieferanten.

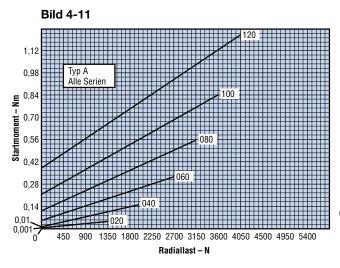
Beim Tolerieren der Welle und des Gehäuses ist es wichtig, Grenzen für den axialen und radialen Rundlauf des Lagersitzes festzulegen. Als Richtwert für normale Anforderungen gilt, die radialen und axialen Rundlauftoleranzen des Lagers als entsprechende Limits heranzuziehen. Für drehmomentkritische Anwendungen sollten engere Toleranzen spezifiziert werden, da auch kleine lokale interne

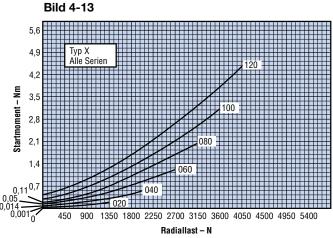
Vorspannungen (negatives Spiel) überraschend hohe Kräfte auf die Kugeln und damit verbundenes hohes Drehmoment bewirken können. Wo Drehmoment minimiert werden muss, ist es wichtig, Unrundheiten von Gehäuse und Welle auf Werte zu limitieren, die den kompletten Verlust von internem Lagerspiel ausschließen.

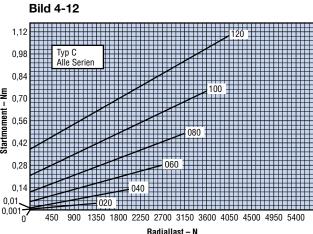
Sauberkeit ist extrem wichtig, um gleichbleibende und vor allem auch geringe Laufmomente zu erzielen. Sehr kleine Mengen mikroskopischer Partikel wie Fussel, Staub und andere Kontaminate können auf wenigen Grad am Umfang verteilt eine Erhöhung des Laufmoments um mehrere hundert Prozent bewirken. Aus diesem Grund sollten die Lager bis zur Montage in der ungeöffneten Originalverpackung verbleiben. Unabhängig davon, ob Drehmoment kritisch ist, sollte jede Anstrengung unternommen werden, die Lager vor Fremdmaterial zu schützen.

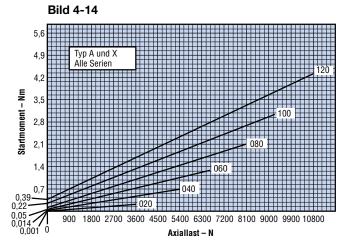
Nachfolgende Tabellen zeigen die ungefähren Momente verschiedener REALI-SLIM® Lager unter bestimmten Bedingungen. Berechnungen für außergewöhnliche Lastfälle können angefordert werden. Die zur Verfügung gestellten Informationen sollten alle Betriebsbedingungen unter verschiedenen Lasten, die Geschwindigkeiten, die Schmierung und die Umgebungsbedingungen inclusive der Temperaturen zusammen mit einer Einbauskizze mit Materialangaben enthalten. Wenn Grenzen in Form von axialer Abweichung, radialer Übersetzung, axialer Übersetzung, oder Winkelrotation vorgegeben werden (Seite 102), sollte diese Information ebenfalls übermittelt werden.

Zusätzliche Prozesse sind nötig, um geringstmögliche Momente zu erreichen. Hochpräzise Ringe und Kugeln, supergefinishte Laufbahnen, sowie präzise interne Lagerabstimmung versprechen optimale Performance.


- Low-torque K\u00e4fige
- Reinraumfertigung
- Werksseitig gefettete Lager
- Super-gefinishte Laufbahnen


Materialien


Ringe	AISI 52100 (Präzisionsklasse 6)
Kugeln	AISI 52100 (Grade 10)
Käfig (Typ A)	PTFE oder Vespel® toroids
Käfig (Typen C, X)	Slugs


Startmoment unter Last

Computergenerierte Momentenkurven für montierte REALI-SLIM® Lager können von unserer Anwendungstechnik angefordert werden

Bemerkungen zu den Tabellen

- 1. Die gezeigten Werte sind statistische Daten* basierend auf:
 - Präzisionsklasse 1 Lager mit verbleibendem Lagerspiel nach der Montage
 - Einer festen und korrekten Montage innerhalb der radialen und axialen Lagerlimits
 - Leichter Ölschmierung
 - Raumtemperatur

- Laufmoment bei Geschwindigkeiten bis zu 10 U/min, üblicherweise durchschnittlich 25 bis 50% des Startmoments, ansteigend mit steigender Geschwindigkeit bis zu 200% des maximal erlaubten diametralen Spiels (Seite 103).
- 3. Interpoliert für Zwischengrößen.
- 4. Kurvennummer gibt den Bohrungsdurchmesser in zehntel Inch an.
 - *Üblicherweise haben nicht mehr als 10% einer Gruppe Lager höhere Anforderungen als gezeigt.

Axiale Abweichung auf Grund von Lagerspiel und Ablenkung

REALI-SLIM® Lager werden oft in Anwendungen eingesetzt, wo die Position des rotierenden Teils gegenüber der stationären Struktur kritisch ist. Die Kenntnis der Abweichung der Rotationsachse und der auslösenden Faktoren ist daher von äußerster Wichtigkeit.

Die Rotationsachse kann in drei Richtungen von ihrer tatsächlichen Lage abweichen – radial, axial, und koaxial. Diese Abweichungen werden als radiale Abweichung, axiale Abweichung und Kippmoment (Winkelrotation) bezeichnet.

Zusätzlich zu den offensichtlichen Effekten von unrundem Lagerlauf, Achsenabweichung in einer der zuvor genannten Arten ergibt sich die Gesamtabweichung aus den zusätzlichen Effekten des Lagerspiels und der elastischen Verformung der Wälzkörper. Das Lagerspiel nach der Montage ändert sich durch die kombinierten Effekte der verwendeten Einbaupraktiken, unterschiedliche thermische Ausdehnung oder Kontraktion der Lagerringe und Montagestrukturen sowie die relative Steifigkeit der Lagerringe und der Verbindungsteile.

Elastische Verformung der Kugeln oder Rollen resultiert aus den externen Lagerbelastungen und wird vom Kugeloder Rollenduchmesser, dem Laufbahnradius, Laufbahndurchmesser und dem Kontaktwinkel beeinflusst

Die folgenden drei Gleichungen dienen als Hilfe bei der Berechnung des Versatzes. Das interne Spiel (DC) muss berechnet oder angenähert werden. Die verbleibenden Variablen können den Tabellen der Seiten 104 bis 109 entnommen werden.

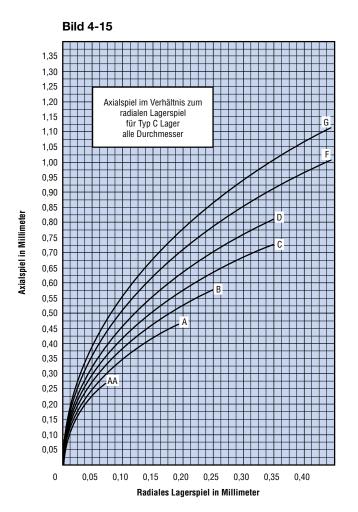
$$RT = RD + \underline{DC}$$

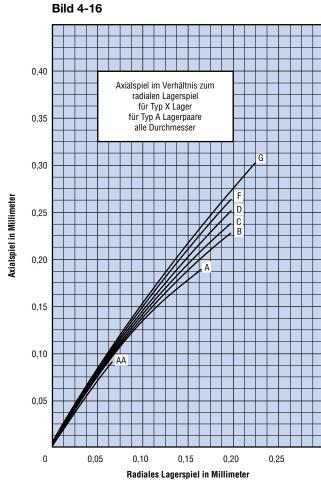
$$2$$

$$AT = AD + \underline{AC}$$

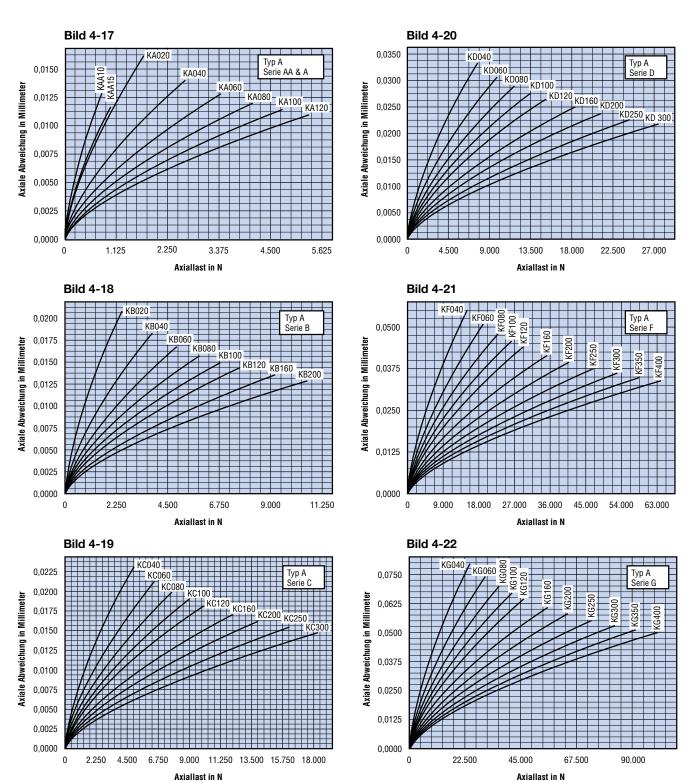
$$2$$

$$AR = MD + AC/PD$$

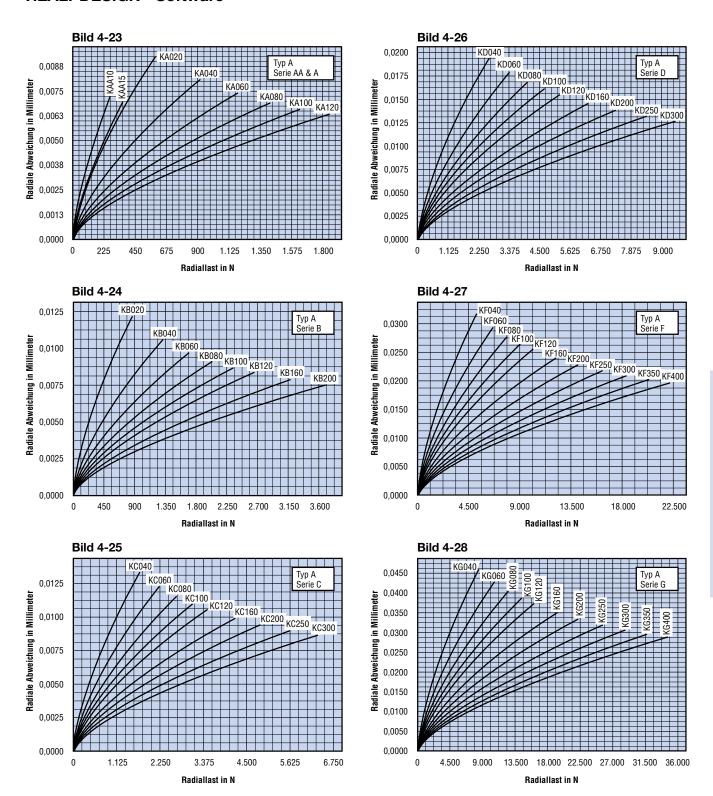

Wobei:

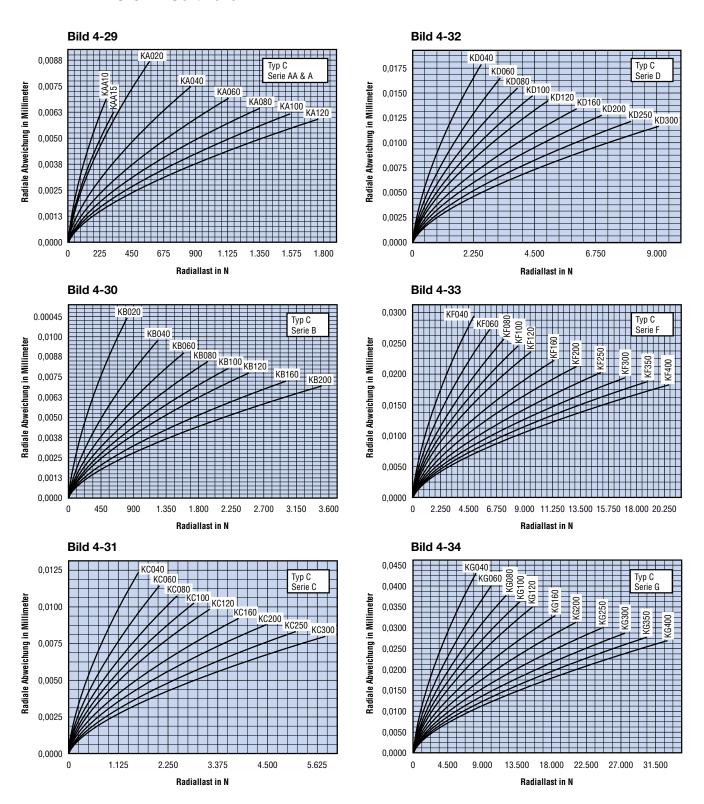

RT = Radiale Übersetzung - in Zoll AT = Axiale Übersetzung - in Zoll AR = Winkelrotation - in Zoll oder Radianten RD = Radiale Abweichung durch radiale Last - in Zoll AD = Axiale Abweichung durch axiale Last - in Zoll MD = Moment Abweichung durch Momentenbelastung - in Zoll oder Radianten DC = Lagerspiel - in Zoll AC = Axialspiel - in Zoll PD = Laufkreis-O.D. + Bore durchmesser - in Zoll

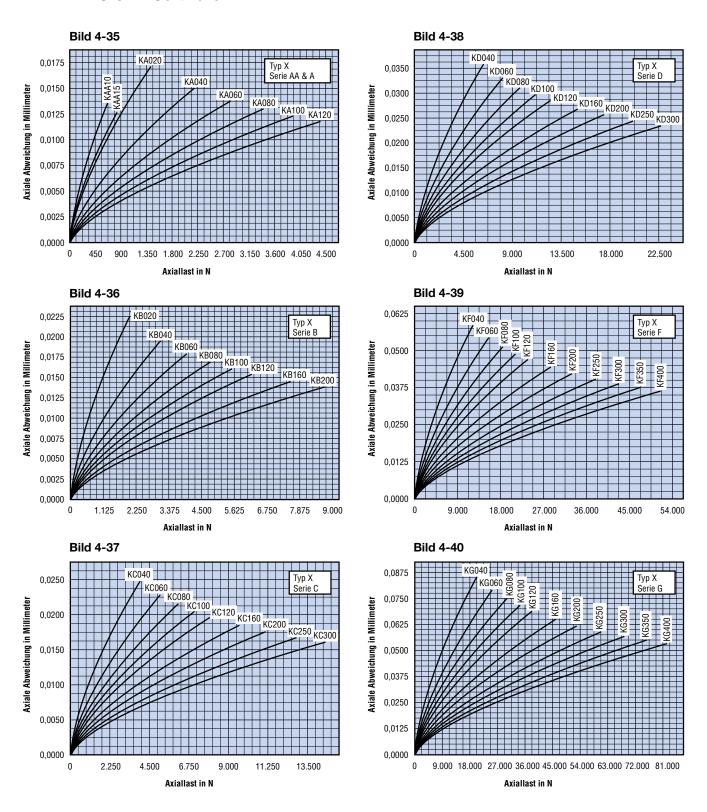
Die Gleichungen können für Anwendungen benutzt werden, wo radiale, axiale, oder Momentenlasten einzeln auftreten, oder wo eine Last überwiegt Zur Unterstützung bei der REALI-SLIM® Lagerauswahl kontaktieren Sie unsere Anwendungstechnik.

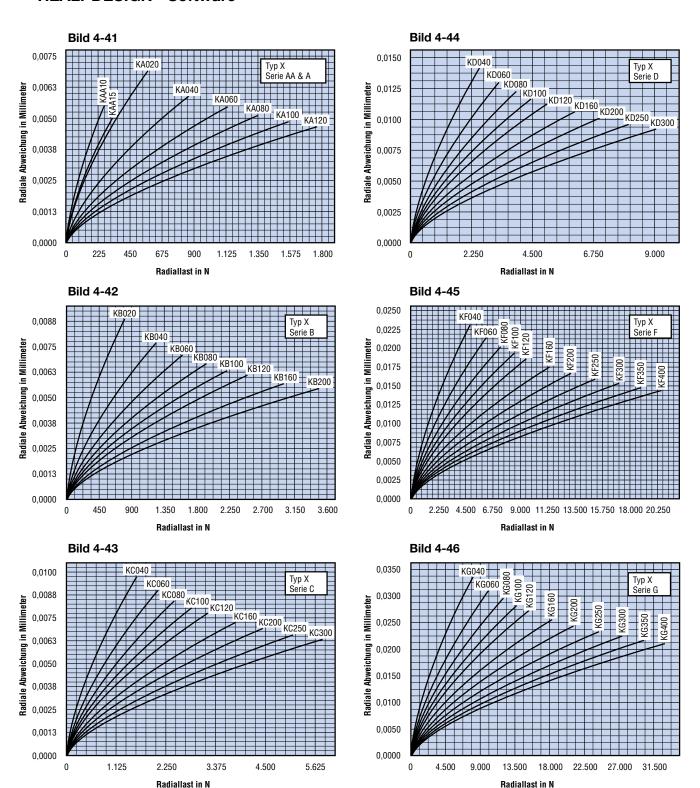

Computergenerierte Berichte und Tabellen für REALI-SLIM® Lager können von unserer Anwendungstechnik angefordert werden oder mit unserer REALI-DESIGN™ Software erstellt werden

Axialspiel im Verhältnis zum radialen Lagerspiel



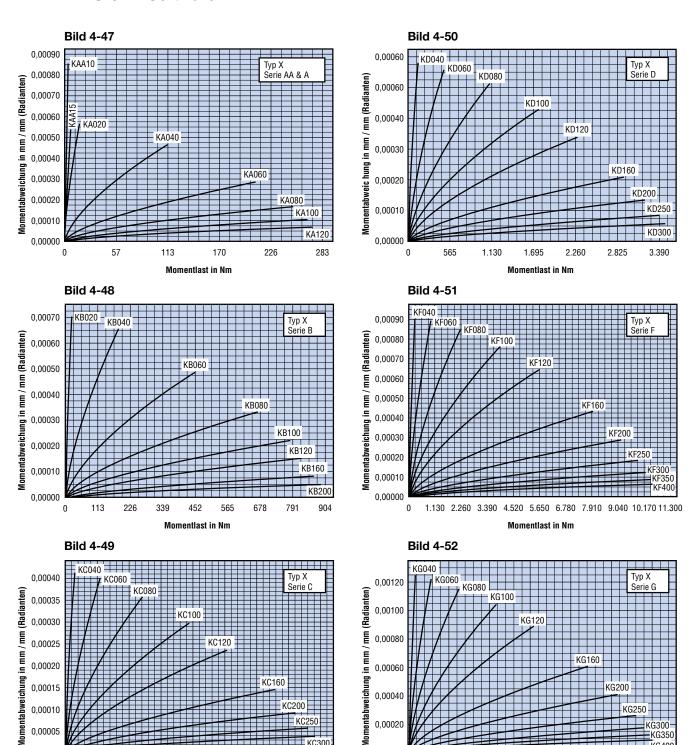

Axiale Abweichung unter Axialer Last Typ A Schrägkugellager


Radiale Abweichung unter Radialer Last Typ A Schrägkugellager


Radiale Abweichung unter Radialer Last Typ C Radiallager

Axiale Abweichung unter Axialer Last Typ X Vierpunktlager

Radiale Abweichung unter Radialer Last Typ X Vierpunktlager


Momentabweichung unter Momentlast Typ X Vierpunktlager

Für detailliertere Informationen benutzen Sie bitte unsere REALI-DESIGN™ Software

0,00000

0

7 1.130 1.41 Momentlast in Nm

0,00000

2.825

5.650

8.475

Momentlast in Nm

11.300

16.950

Einbau und Wartung von REALI-SLIM® Dünnringlagern

nspektion und Einbauverfahren für REALI-SLIM® Dünnringlager	111
Schmierung und Wartung von REALI-SLIM® Dünnringlagern	113

Inspektion und Einbauverfahren für REALI-SLIM® Dünnringlager

Inspektion

Die einzigartige Bauweise der REALI-SLIM® Lager macht einige der gängigen Messmethoden undurchführbar. Da sehr leichter Druck ausreichend ist, die dünnen Ringe zu verformen, sollten konventionelle zwei-Punkt Messungen des Innen- und Außendurchmessers nicht angewendet werden. "Jet Air gages", oder andere berührungslose Messmethoden sollten, um die Messabweichungen auf einem akzeptablen Level zu halten, bevorzugt werden. Messungen müssen an ausreichend vielen Punkten durchgeführt werden, um einen korrekten Durchschnittswert, der nicht unbedingt in der Mitte zwischen den Maximum und Minimum Messwerten liegen muss, zu erhalten. Ein REALI-SLIM® Lager kann frei gemessen^① unrunder sein als die angegebenen ABMA Toleranzen der entsprechenden Präzisionsklasse. Das ist unproblematisch, da sich die Lagerringe dem Wellen- und Gehäusedurchmesser anpassen.

Um den tatsächlichen Rundlauf eines Lagerrings zu bestimmen und den Unrundheitseffekt auszuschließen, wird die Messung für jede individuelle Wandstärke durchgeführt. Dies ist schematisch in Bild 5-1 dargestellt. Der Fühler muss die Laufbahn am Kugel- oder Rollenberührungspunkt abtasten und muss für den zu prüfenden Rundlauf (axial oder radial) exakt positioniert werden.

Messung des radialen Rundlaufs am Innenring eines Typ C Lagers

Bild 5-1

Das Radialspiel von REALI-SLIM® Lagern wird durch selektive Montage von Kugeln und Laufbahnen und anschließender Vermessung mittels spezieller für diesen Zweck konstruierter Prüflehren kontrolliert.

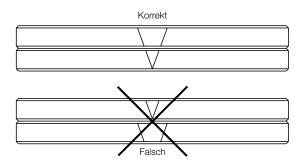
Standard Inspektions- und Qualitätskontrollprozeduren bei KAYDON® erfüllen die Anforderungen der öffentlichen Auftraggeber sowie der führenden Luftfahrtindustrie. Ein "certificate of compliance" für die jeweilige Anforderung kann auf Wunsch ausgestellt werden.

Einbau

Um das Potential an Genauigkeit und Lebensdauer eines REALI-SLIM® Lagers auszunutzen, ist es wichtig, dass der Einbau korrekt in einer sauberen Umgebung durchgeführt wird. Sauberkeit ist entscheidend für die Leistung des Lagers. Arbeitsflächen und Werkzeuge müssen frei von Verunreinigungen, Spänen und Graten sein. Einmaltücher oder saubere, fusselfreie Tücher sollten benutzt werden.

Unter keinen Umständen sollte ein Lager als Distanzhalter für Verbindungsteile dienen, während diese geschliffen oder anderweitig bearbeitet werden. Kleinste Schleifkörner oder Metallabrieb (weich oder hart) können die präzise Geometrie und die Oberfläche der Laufbahnen und Kugeln nachhaltig zerstören, und es ist nahezu unmöglich diese aus einem montierten Lager zu entfernen.

Das Gehäuse und die Welle sollten gewissenhaft gereinigt werden, wobei besondere Aufmerksamkeit auf Vertiefungen und Spalten gerichtet werden sollte, in denen sich Schmutz, Späne und Schneidöl halten kann. Unbearbeitete Oberflächen sollten lackiert oder anderweitig versiegelt werden. Die Montagefläche für das Lager muss sorgfältig geprüft und gereinigt werden und zur leichteren Montage und Vermeidung von Verkanten sollte sie leicht eingeölt werden. Die Gehäusebohrung, der Wellendurchmesser, die Anlageflächen sowie die Hauptabmessungen sollten überprüft werden.


Das Lager sollte erst unmittelbar vor der Montage aus der Schutzverpackung entnommen werden.

Inspektion und Einbauverfahren für REALI-SLIM® Dünnringlager (Fortsetzung)

Das Einpassen des Lagers ins Gehäuse oder auf die Welle muss zur Vermeidung von Lagerschäden sehr vorsichtig erfolgen. Für REALI-SLIM® Lager wird der Einsatz von Temperaturdifferenzen empfohlen, um den Einbauraum zu vergrößern und die nötigen Montagekräfte zu minimieren. Um die benötigte Temperaturdifferenz zu berechnen, wird ein Wärmeausdehnungskoeffizient von 12,7 µm/m-°C für AISI 52100 Stahlringe und 10,1 µm/m-°C für AISI 440C Ringe angenommen. Für ein Lager mit Präzisionsklasse 1 und einem ID von 50,8 mm auf einer Stahlwelle beträgt das Differential zur Eliminierung aller Interferenzen zwischen dem maximalen Wellendurchmesser und dem minimalen Lagerdurchmesser 32°C; für ein 101,6 mm ID sind es 16°C. Es sollte entweder trockene Wärme oder heißes Öl verwendet werden. Induktives Erwärmen empfiehlt sich bei großen Lagern. Auf Überhitzung der Lager muss geachtet werden. 121°C sollten nicht überschritten

Wenn Einpressen nötig ist, sollte eine Axialpresse mit passendem Stempel benutzt werden, um die volle Kraft flächig auf den einzupressenden Lagerring aufzubringen – niemals sollte mittig auf das Lager gedrückt werden, da dadurch die Kugeln und Laufbahnen beschädigt werden.

Alle gepaarten Lager sind, um die korrekte Position der Lager zueinander zu zeigen, mit einem "V" am Innen- und Außendurchmesser markiert. Dieses "V" ist am Lagerhochpunkt angebracht und kann somit zum gegenseitigen Ausgleich am Tiefpunkt von Welle und Gehäuse entsprechend montiert werden.

Danach müssen die Lager bis zur abschließenden Montage weiterhin vor Kontamination geschützt werden. Die Berücksichtigung dieser Punkte garantiert eine erfolgreiche Montage.

Sollte es nötig sein, ein Lager an uns zurückzusenden, sollte es mit Konservierungsöl geschützt und zum Schutz vor Beschädigungen beim Transport genauso wie bei der Auslieferung verpackt sein. Wenn Lager zur Fehleranalyse zurückgeschickt werden, sollten sie im Ausbauzustand zurückgeschickt werden, da der Zustand des Teils wichtige Informationen zur Fehleranalyse liefert (Sauberkeit, Schmierzustand...etc.).

Schmierung und Wartung von REALI-SLIM® Dünnringlagern

Die Schmierung in einem Lager dient der Reibungsreduzierung und Verschleißminderung zwischen den beweglichen Teilen, soll die Wärmeableitung fördern und Korrosion von den kritische Oberflächen fern halten. RODRIGUEZ® empfiehlt die Auswahl des richtigen Schmierstoffes basierend auf der Auswertung der Einsatzbedingungen durch den Systemingenieur (zumindest Drehzahl, Art und Stärke der Lasten und die Umgebungstemperaturen).

Im Allgemeinen werden drei Arten von Schmierung angewendet: Öl, Fett,Trockenschmierung oder Oberflächenbehandlung.

Öl bietet normerweise die umfassenste Schmierung. Auf Grund seiner flüssigen Konsistenz bietet es besseren Schutz für die kritischen Oberflächen und hilft bestens bei der Wärmeableitung, hier besonders, wenn Zirkulation und Kühlung vorhanden sind. Bei Hochgeschwindigkeitsanwendungen, wo die Erwärmung deutlicher ist, wird Öl spezifiziert (siehe Seite 99). Wo geringe Momente gefordert sind, ergibt Öl normalerweise die geringeren Reibungswerte.

Fett hat gewisse eigene Vorteile. Da es leichter zurückgehalten wird, ist die Auslegung des Gehäuses und der Dichtungen einfacher. Bei vielen Anwendungen schützt das Fett in Verbindung mit Labyrinthen oder engen Spalten zwischen dem statischen und rotierenden Teil ansich schon vor Verunreinigungen. Bei höheren, innerhalb der für Fett zulässigen Geschwindigkeiten, wird oft eine Labyrinthdichtung verwendet.

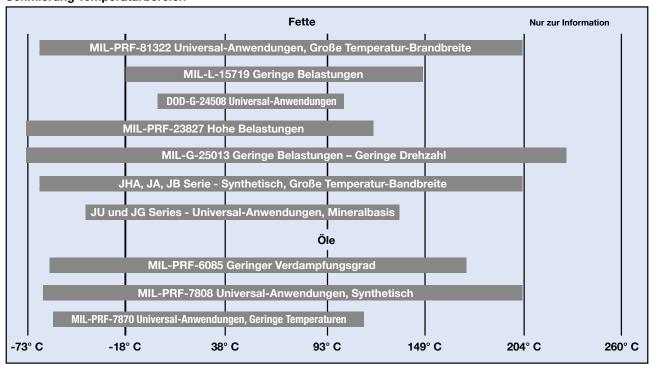
Trockenschmierung und Oberflächenbehandlung werden bei extremen Umgebungsbedingungen, wo konventionelle Schmiermittel nicht toleriert werden oder nicht funktionieren, als Lagerschmierung eingesetzt. Eine Vielzahl von Typen steht zur Auswahl; die Möglichkeiten beinhalten Wolframdisulfid, Graphit und Molybdendisulfid.

Es ist wichtig, zu wissen, dass die Menge des Schmiermittels die Leistungsfähigkeit des Lagers unter den verschiedenen Bedingungen beeinflusst. Nur relativ kleine Mengen Schmiermittel sind nötig, um Reibung und Verschleiß zu reduzieren, solange der Schmierfilm auf allen Kontaktflächen erhalten bleibt. Wo Geschwindigkeit signifikant ist, ergeben zu hohe Mengen an Öl oder Fett höhere Betriebstemperaturen, was zur frühzeitigen Ermüdung des Lagers führen kann.

Ungedichtete Lager werden mit einem Konservierungsöl zum Schutz vor Korrosion während der Lagerung ausgeliefert. RODRIGUEZ® empfiehlt, diesen Schutz vor der eigentlichen Befettung mit sauberem Petroleum zu entfernen. Wenn das Konservierungsöl nicht entfernt wird, muss die Kompatibilität mit dem Schmiermittel sichergestellt sein.

Bei Anwendungen, in denen nur geringe Momente zulässig sind, sollte der Korrosionsschutz mit einer sauberen Petroleumlösung entfernt werden und anschließend mit einem für die Anwendung geeigneten Schmiermittel befettet werden. Eine weitere Option, den Einbau zu erleichtern, ist, REALI-SLIM® Lager werksseitig mit einem vom Kunden gewählten gängigen Fett oder Öl zu liefern.

Gedichtete Lager sind ca. zu einem Drittel mit einem Mehrzweckfett befüllt. Außenliegende Flächen haben zum Schutz während der Lagerung in der Originalverpackung einen leichten Überzug mit dem gleichen Schmiermittel erhalten.


Schmierung und Wartung von REALI-SLIM® Dünnringlagern (Fortsetzung)

Lager, mit oder ohne Dichtung, können mit optionalen Schmiermitteln geliefert werden. In der nachfolgenden Tabelle werden häufig eingesetzte Fette und Öle gezeigt. Einige wurden für spezielle Einsatzbedingungen entwickelt. Aus diesen Gründen und wegen der unterschiedlichen Kosten sollte die Auswahl mit einem Schmierstoffexperten erfolgen.

Wegen der eingeschränkten Lagerfähigkeit flüssiger Schmierstoffe, sollten ab Werk geschmierte Lager nach spätestens zwei Jahren zum Einsatz kommen. Empfehlungen zur Wiederbefettung bei überlagerten Produkten erhalten Sie bei RODRIGUEZ®.

Um das volle Potential von REALI-SLIM® Lagern zu nutzen, empfiehlt RODRIGUEZ®, dass die Wartungsanweisungen des Kunden die Anwendung berücksichtigen und Prozeduren beinhalten, die sicherstellen, dass die Lager zu jeder Zeit gegen Fremdmaterialien jeglicher Art ausreichend geschützt sind, und dass frisches Öl oder Fett in angemessenen Abständen zur Lagerreinigung und adäquater Schmierung eingebracht wird.

Bild 5-2 Schmierung Temperaturbereich

Weitere Produkte

Metrische Serie Kugellager (BB Serie)	116
Lager für extreme Umgebungsbedingungen	119
KT Serie Kegelrollenlager	121

Metrische Serie Kugellager (BB Serie) Einsatzüberdeckend zu Kreuzrollenlager

BB Metrische Serie Vierpunktlager sind maßlich austauschbar mit Kreuzrollenlagern.

Kugellager der BB Serie sind passend für die Einbauräume gängiger Kreuzrollenlager.

Wenn Faktoren wie Kosten, Verfügbarkeit, Korrosionsbeständigkeit, engere Toleranzen, Laufmoment, Abdichtungen und Temperaturbeständigkeit für Ihre Anwendung wichtig sind, zahlt es sich aus, die BB Vierpunktlagerserie als Alternative zu Kreuzrollenlagern in Betracht zu ziehen. Die zusätzliche Flexibilität bei der Entwicklung kann oft zum Erreichen besserer Leistung und Wirtschaftlichkeit hilfreich sein.

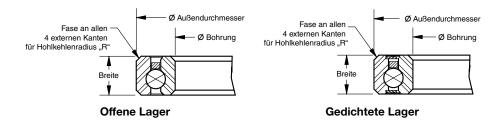
Zusätzliche Merkmale, die üblicherweise bei Kreuzrollenlagern nicht vorhanden sind, sind Schutzverpackungen als Korrosionsschutz, Abdichtungen für extreme Einsätze, anwendungsspezifische Befettung und Temperaturbeständigkeit.

Optimieren Sie Ihre Einsatzmöglichkeiten

Mit zusätzlichen Merkmalen, die üblicherweise bei Standardkreuzrollenlagern nicht vorhanden sind, bieten die Lager der BB Serie bessere Einsatzmöglichkeiten.

ENDURAKOTE® Beschichtung – Für Anwendungen, die höchsten Korrosionsschutz verlangen, bieten wir unsere geschützte ENDURAKOTE® Beschichtung an. Diese dünne, dichte Chrombeschichtung gibt AISI 52100 Lagern eine vergleichbare oder bessere Korrosionsbeständigkeit als AISI 440C Edelstahl. Anders als viele andere traditionelle Chrombeschichtungen platzt oder blättert die extrem harte Oberfläche der ENDURAKOTE® Beschichtung bei Beanspruchung nicht ab und somit bleibt der Korrosionsschutz erhalten, und der Oberflächenverschleiß wird minimiert. Die ENDURAKOTE® Beschichtung hat sich in kritischen militärischen, Luft- und Raumfahrtanwendungen bewährt.

Dichtungen/Deckel – Standard Industriedichtungen sind üblicherweise aus Nitrilkautschuk. RODRIGUEZ® bietet darüber hinaus für Anwendungen mit hohen Temperaturen oder extremen Umgebungsbedingungen kundenspezifische Dichtungen aus Silikon oder Viton® Materialien an.


Temperaturbeständigkeit – Standard Kreuzrollenlager erbringen ihre Maximalleistung nur bis 100°C. Unsere Lager dagegen können durch eine spezielle Wärmebehandlung bei höheren Temperaturen arbeiten.

Schmiermitteloptionen – RODRIGUEZ® bietet das komplette Spektrum an Schmierstoffen, was ihnen ermöglicht, für einen weiten Bereich an Anwendungen mit speziellen Anforderungen wie Feuchtraum, Hitze oder Kälte, Vakuum oder geringes Laufmoment die optimale Lagerleistung zu erreichen.

Käfige – Der bekannte Rollenkäfig für Kreuzrollenlager besteht aus einem Nichtmetallwerkstoff. Hohe Temperaturen und/oder horizontale Anwendungen verlangen besondere Materialien oder ein besonderes Käfigdesign. Vierpunktlager können für ein breites Anwendungsspektrum mit unterschiedlichen Käfigvarianten geliefert werden.

Interne Vorspannung – RODRIGUEZ® kann Sie durch unsere Vierpunktlager der BB Serie unterstützen, die geforderte Einsatzleistung zu erreichen. Vorgespannte Lager werden für größere Steifigkeit empfohlen, Lagerspiel dagegen wird für geringes Laufmoment.

Metrische Serie Kugellager (BB Serie) (Fortsetzung)

Alle Abmessungen in mm

(REALI-SLIM® Lager einsatzüberdeckend zu Standard Kreuzrollenlager)

Tailanumman	KAYDON	Gewicht	Bohrung	Außen-Ø	Breite	"R"		Tragzahlen	in N
Teilenummer	Teilenr.	(kg)	(nominal +0)	(nominal +0)	(nominal +0)	"K"	Radial	Axial	Moment (Nm)
BB3010	39318001	0,10	30 -0,010	55 -0,013	10 -0,12	1,0	4.970	675	78
BB3510	39319001	0,11	35 -0,012	60 -0,013	10 -0,12	1,0	5.130	709	90
BB4010	39320001	0,12	40 -0,012	65 -0,013	10 -0,12	1,0	5.530	776	107
BB4510	39321001	0,13	45 -0,012	70 -0,013	10 -0,12	1,0	5.910	839	125
BB5013	39322001	0,24	50 -0,012	80 -0,013	13 -0,12	1,0	9.480	1.321	227
BB6013	39323001	0,30	60 -0,015	90 -0,013	13 -0,12	1,0	10.100	1.436	279
BB7013	39324001	0,31	70 -0,015	100 -0,015	13 -0,12	1,0	11.080	1.601	346
BB8016	39325001	0,62	80 -0,015	120 -0,015	16 -0,12	1,0	16.790	2.417	618
BB9016	39326001	0,73	90 -0,020	130 -0,015	16 -0,12	1,5	17.730	2.584	718
BB10020	39327001	1,21	100 -0,020	150 -0,015	20 -0,12	1,5	23.950	3.480	1.102
BB11015	39328001	0,66	110 -0,020	145 -0,018	15 -0,12	1,0	13.900	2.097	652
BB11020	39329001	1,36	110 -0,020	160 -0,020	20 -0,12	1,5	25.240	3.720	1.300
BB12025	39330001	2,13	120 -0,020	180 -0,020	25 -0,12	2,0	39.810	5.745	2.197
BB13025	39331001	2,27	130 -0,025	190 -0,025	25 -0,12	2,0	40.980	5.968	2.412
BB14025	39332001	2,50	140 -0,025	200 -0,025	25 -0,12	2,0	43.590	6.402	2.726
BB15013	39333001	0,61	150 -0,025	180 -0,025	13 -0,12	1,0	15.900	2.455	965
BB15025	39334001	2,72	150 -0,025	210 -0,025	25 -0,12	2,0	44.680	6.614	2.959
BB15030	39335001	4,54	150 -0,025	230 -0,025	30 -0,12	2,0	64.030	9.325	4.475
BB20025	39336001	3,40	200 -0,030	260 -0,030	25 -0,12	2,5	51.210	7.820	4.333
BB20030	39337001	5,72	200 -0,030	280 -0,030	30 -0,12	2,5	72.880	10.980	6.435
BB20035	39338001	8,17	200 -0,030	295 -0,030	35 -0,12	2,5	93.670	13.921	8.529
BB25025	39339001	4,09	250 -0,030	310 -0,035	25 -0,12	3,0	57.180	8.939	5.891
BB25030	39340001	7,04	250 -0,030	330 -0,035	30 -0,12	3,0	81.000	12.519	8.641
BB25040	39341001	9,08	250 -0,030	355 -0,035	40 -0,12	3,0	103.240	15.812	11.489
BB30025	39342001	4,99	300 -0,035	360 -0,035	25 -0,12	3,0	61.630	9.821	7.482
BB30035	39343001	11,80	300 -0,035	395 -0,035	35 -0,12	3,0	112.630	17.595	14.399
BB30040	39344001	15,44	300 -0,035	405 -0,035	40 -0,12	3,0	112.400	17.595	14.576
BB40035	39345001	12,03	400 -0,040	480 -0,040	35 -0,25	3,5	127.010	20.518	20.560
BB40040	39346001	20,66	400 -0,040	510 -0,040	40 -0,25	3,5	128.880	20.919	21.572
BB50040	39347001	22,70	500 -0,045	600 -0,045	40 -0,25	3,5	143.810	23.996	29.099
BB50050	39348001	38,05	500 -0,045	625 -0,045	50 -0,25	3,5	145.550	24.367	30.120
BB60040	39349001	27,24	600 -0,045	700 -0,045	40 -0,20	4,0	157.090	26.887	37.565
BB70045	39350001	44,95	700 -0,045	815 -0,045	45 -0,25	4,0	168.870	29.634	47.062
BB80070	39351001	98,52	800 -0,050	950 -0,050	70 -0,25	5,0	268.460	47.799	86.420
BB90070	39352001	109,87	900 -0,050	1.050 -0,050	70 -0,25	5,0	283.070	51.478	101.535

Bemerkung 1: Die genannten Lasten gelten nicht simultan. Für kombinierte Lasten siehe Abschnitt Lagerauswahl und Lastanalyse. Die dynamischen Kapazitäten basieren auf 1 million Umdrehungen für L10 Lebensdauer. Die gezeigten Werte gelten nicht für Hybridlager der Serien P, X, und Y – für Details kontaktieren Sie unsere Anwendungstechnik.

Bemerkung 2: Standard Lager werden ohne Deckscheiben und Dichtungen und mit leichtem Lagerspiel geliefert. Weitere Ausführungen erhalten Sie durch die folgenden Nachsetzzeichen zur Teilenummer:

U = einseitige Dichtung

CO = Standard Spiel

CCO = Vorspannung

TT = beidseitige Deckscheibe

UU = zweiseitige Dichtung

CI = höheres Lagerspiel

T = einseitige Deckscheibe Verfügbarkeit prüfen.

Metrische Serie Kugellager (BB Serie) (Fortsetzung)

Alle Abmessungen in mm

Teile-	Bohrung	Außen-Ø	Breite	Standard	Radialer und A	xialer Rundlauf
nummer	(nominal +0)	(nominal +0)	(nominal +0)	Lagerspiel	Innen mm	Außen mm
BB3010	30 -0,010	55 -0,013	10 -0,12	0,025-0,038	0,01	0,01
BB3510	35 -0,012	60 -0,013	10 -0,12	0,03-0,043	0,01	0,01
BB4010	40 -0,012	65 -0,013	10 -0,12	0,03-0,043	0,013	0,013
BB4510	45 -0,012	70 -0,013	10 -0,12	0,03-0,043	0,013	0,013
BB5013	50 -0,012	80 -0,013	13 -0,12	0,03-0,056	0,013	0,013
BB6013	60 -0,015	90 -0,013	13 -0,12	0,03-0,056	0,013	0,013
BB7013	70 -0,015	100 -0,015	13 -0,12	0,03-0,056	0,015	0,015
BB8016	80 -0,015	120 -0,015	16 -0,12	0,03-0,056	0,015	0,015
BB9016	90 -0,020	130 -0,015	16 -0,12	0,041-0,066	0,015	0,015
BB10020	100 -0,020	150 -0,015	20 -0,12	0,041-0,066	0,015	0,015
BB11015	110 -0,020	145 -0,018	15 -0,12	0,041-0,066	0,015	0,02
BB11020	110 -0,020	160 -0,020	20 -0,12	0,041-0,066	0,015	0,02
BB12025	120 -0,020	180 -0,020	25 -0,12	0,05-0,08	0,02	0,02
BB13025	130 -0,025	190 -0,025	25 -0,12	0,05-0,08	0,025	0,025
BB14025	140 -0,025	200 -0,025	25 -0,12	0,05-0,08	0,025	0,025
BB15013	150 -0,025	180 -0,025	13 -0,12	0,05-0,08	0,025	0,025
BB15025	150 -0,025	210 -0,025	25 -0,12	0,05-0,08	0,025	0,025
BB15030	150 -0,025	230 -0,025	30 -0,12	0,05-0,08	0,025	0,025
BB20025	200 -0,030	260 -0,030	25 -0,12	0,06-0,09	0,03	0,03
BB20030	200 -0,030	280 -0,030	30 -0,12	0,06-0,09	0,03	0,03
BB20035	200 -0,030	295 -0,030	35 -0,12	0,06-0,09	0,03	0,03
BB25025	250 -0,030	310 -0,035	25 -0,12	0,07-0,1	0,035	0,035
BB25030	250 -0,030	330 -0,035	30 -0,12	0,07-0,1	0,035	0,035
BB25040	250 -0,030	355 -0,035	40 -0,12	0,07-0,1	0,035	0,035
BB30025	300 -0,035	360 -0,035	25 -0,12	0,07-0,1	0,035	0,035
BB30035	300 -0,035	395 -0,035	35 -0,12	0,07-0,1	0,035	0,035
BB30040	300 -0,035	405 -0,035	40 -0,12	0,07-0,1	0,035	0,035
BB40035	400 -0,040	480 -0,040	35 -0,25	0,08-0,11	0,04	0,04
BB40040	400 -0,040	510 -0,040	40 -0,20	0,08-0,11	0,04	0,04
BB50040	500 -0,045	600 -0,045	40 -0,25	0,09-0,12	0,045	0,045
BB50050	500 -0,045	625 -0,045	50 -0,25	0,09-0,12	0,045	0,045
BB60040	600 -0,045	700 -0,045	40 -0,25	0,09-0,12	0,045	0,045
BB70045	700 -0,045	815 -0,045	45 -0,25	0,09-0,12	0,045	0,045
BB80070	800 -0,050	950 -0,050	70 -0,25	0,09-0,12	0,05	0,05
BB90070	900 -0,050	1.050 -0,050	70 -0,25	0,1-0,13	0,05	0,05

Bemerkung 1: Die genannten Lasten gelten nicht simultan. Für kombinierte Lasten siehe Abschnitt Lagerauswahl und Lastanalyse. Die dynamischen Kapazitäten basieren auf 1 million Umdrehungen für L10 Lebensdauer. Die gezeigten Werte gelten nicht für Hybridlager der Serien P, X, und Y – für Details kontaktieren Sie unsere Anwendungstechnik.

Bemerkung 2: Standard Lager werden ohne Deckscheiben und Dichtungen und mit leichtem Lagerspiel geliefert. Weitere Ausführungen erhalten Sie durch die folgenden Nachsetzzeichen zur Teilenummer:

U = einseitige Dichtung

CO = Standard Spiel

CCO = Vorspannung

TT = beidseitige Deckscheibe

UU = zweiseitige Dichtung CI = höheres Lagerspiel

höheres Lagerspiel T = einseitige Deckscheibe

Verfügbarkeit prüfen.

Lager für extreme Umgebungsbedingungen (Materialcode S, P, X, und Y)

Edelstahllager werden eingesetzt, wo hohe Präzision und Korrosionsbeständigkeit gefordert werden.

REALI-SLIM® Dünnringlager sind lieferbar mit AISI 440C Edelstahlringen, Messing oder nichtmetallischen Käfigen und wie gewünscht, entweder mit Edelstahl oder Keramikkugeln, als Radiallager "C" Schrägkugellager "A" oder als Vierpunktlager "X". Diese Lager, verfügbar in allen gängigen Abmessungen, reduzieren bekannterweise Oberflächenschäden und Ablösungen unter extremen Umgebungsbedingungen. (Siehe Seiten 49-52)

Hybrid Lager sind für Anwendungen mit Mangelschmierung bestens geeignet.

Die REALI-SLIM® Dünnringlagerproduktlinie wurde um verschiedene weitere speziell entwickelte Lagerserien erweitert, um die Vorzüge der REALI-SLIM® Lager in den schwierigsten und härtesten Einsatzbedingungen einzubringen. Wir bieten REALI-SLIM® Lager mit einer Vielzahl von Besonderheiten für spezielle Einsatzbedingungen:

- Chemische Beständigkeit/hohe Temperaturen-P Serie (Siehe nächste Seite.)
- Hohe Leistung/niedriges Moment-Q Serie
- Hohe Leistung/geringe Partikel-X, Y Serie

Anwendungen mit geringer Partikelbelastung, hoher Genauigkeit, hohen Geschwindigkeiten, und/oder Betrieb unter widrigen Bedingungen oder ohne Schmierung können von Hybridlagern profitieren. Tests haben die signifikante Reduzierung der Partikelbelastung gezeigt, die durch den Einsatz von Hybridausführungen mit Keramikelementen in Verbindung mit gehärteten Stahlringen erreicht werden können. Zusätzlich bieten die physikalischen Eigenschaften der rollenden Keramikelemente (Präzision, Härte, geringes Gewicht) weitere Vorteile, wie z. B. verbesserte Wiederholgenauigkeit, geringere Momente, höhere Steifigkeit, und bessere Widerstandskraft bei Mangelschmierung oder keiner Schmierung.

Große Leistungssteigerungen können nicht nur durch Anpassen der Abmessungen, sondern auch durch Auswahl des richtigen Materials für die Anwendung erreicht werden. Diese alternativen Ring- und Kugelwerkstoffe verhalten sich anders als herkömmliche Chromstahl Lager. Belastungsdaten, Lebensdauerberechnungen und Steifigkeiten unterscheiden sich von anderen Produkten in diesem Katalog. Fragen Sie uns zu den technischen Charakteristiken der Hybrid REALI-SLIM® Lager.

Lager für extreme Umgebungsbedingungen (Materialcode S, P, X, und Y) (Fortsetzung)

Serie P - Chemische Beständigkeit

In Anwendungen, wo Korrosionsbeständigkeit und chemische Beständigkeit gefordert werden, gibt es Lager der Serie P. Diese Lager kennzeichnen AlSI 17-4PH Stahlringe und keramische Kugeln. Sie wurden hergestellt, um einen höheren Korrosionschutz und chemische Beständigkeit zu bieten als die Serie N oder Serie S Lager. Wegen der Härtebeschränkungen von AlSI 17-4PH Stahl muss ein Korrekturfaktor von 0,17 zu den dynamischen Standardwerten hinzugerechnet werden, d.h. der Einsatz von Lagern der P Serie muss vor der Auswahl sorgfältig auf ausreichende Lebensdauer und Belastbarkeit überprüft werden

Materialien

Ringe	AISI 17-4PH Stahl
Kugeln	Borsilikat, Glas, oder Keramik
Käfig	Typ A; PTFE oder Vespel [®] Toroid Distanzhalter oder Edelstahl
	Typen C & X; Edelstahl oder Nichtmetallischer Ring

Spezifikationen für REALI-SLIM® Hybrid Lager

Artikel	Beschreibung	Referenz Spezifikation
	Material Analyse	
Ringe	AISI 440C Edelstahl	ASTM A-756
Kugeln	AISI 440C Edelstahl oder Keramik: Silikon Nitrit	ASTIVI A-750
Käfige C, X Lager	I R Tyn– Messing oder nichtmetallischer Werkstoff ■ Outland	
A Lager	L Typ-Nylon, Fiberglas verstärkt G Typ-Nylon, Fiberglas verstärkt Seite 93	ASTM B-36 or B-134
	Präzision	
Ringe Dimensionen	KAYDON Präzisionsklasse 1, Höhere Klassen verfügbar	ABMA ABEC-1F oder besser
Ringe Rundlauf	KAYDON Präzisionsklasse 1, Höhere Klassen verfügbar	ABMA ABEC-1F oder besser
Kugeln	ABMA Grad 10 Edelstahl oder Grad 5 Keramik	ANSI/ABMA/ISO 3290

KT Serie Kegelrollenlager

Das Konzept von Standard Lagern mit geringem Gewicht, kleinen Querschnitten und großen Innendurchmessern beinhaltet sowohl Kegel-und Radialrollenlager als auch Kugellager.

Kegelrollenlager der KT Serie bieten Vorteile für Anwendungen mit hohen Belastungen, die dennoch von den vielen einzigartigen Vorteilen eines Dünnringlagers profitieren wollen. KT Kegelrollenlager sind für Anwendungen vom off-shore Bereich bis hin zu Werkzeugmaschinen, wo Platz und Gewicht von Wichtigkeit sind, geeignet.

Die Standardkegelrollenlager der KT Serie haben Laufbahnen und Rollen aus durchgehätetem AISI 52100 Stahl mit einem einteiligen, gestanzten Käfig. Wenn gewünscht, können sie als passend geschliffenes Lagerpaar mit oder ohne Distanzhülsen geliefert werden.

Die Kegelrollenlager in diesem Katalog sind einreihige Radiallager, vorwiegend für Anwendungen mit radialen Lasten. Wegen der mehrteiligen Konstruktion, werden die Rollen von einem Käfig gehalten.

Da diese Lager unter Axiallast einen Kontaktwinkel von ca. 12° einnehmen, können ausreichend Axiallasten aufgenommen werden. Diese jedoch nur uni-directional, und wenn die Axialkraft auf die breite Seite der Lagerringe trifft.

Wie im Fall des Axialkugellagers, wird das einreihige Kegelrollenlager zur Aufnahme axialer Kräfte normalerweise gegen ein zweites (baugleiches) Lager gestellt. Zwei Lager dieses Typs werden mit der Kontaktlinie außerhalb des Lagers ("back to back" - "O"-Anordnung) oder innerhalb des Lagers ("face to face" - "X"-Anordnung) montiert, um wechselseiteige Belastungen aufzunehmen.

			Außen	Montage-		Leistu 500 U/r	-	Konus-	Ring-		Schul	Iter Ø		
l .	KAYDON Lager Nr.	Bohr. d (mm)	-Ø D	breite T	K	K 3000 S		breite C			Gehäuse		Gewicht in kg	
T T		(11111)	(mm)	(mm)	(mm)	Radial (N)	Thrust (N)	(mm)	(mm)	S1 (mm)	S2 (mm)	H1 (mm)	H2 (mm)	
	KT-070	177,800	215,900	20,625	44,196	22.108	12.722	20,625	15,875	187,325	185,420	206,375	209,550	1,41
	KT-091	231,775	260,350	18,237	45,466	21.885	12.233	18,339	15,164	244,475	236,525	250,190	255,270	1,31
	• KT-098	250,825	292,100	26,975	46,990	41.191	22.241	26,975	22,225	263,525	259,715	281,000	285,750	2,74
	KT-100	254,000	282,575	15,875	45,466	17.882	10.009	15,875	12,700	266,700	261,620	273,050	276,860	1,31
$\left \begin{array}{c} H_1 \\ H_1 \end{array} \right $	KT-110	279,400	317,500	22,225	47,244	33.895	18.238	22,225	17,475	290,525	285,750	304,800	311,150	2,29
	KT-112	285,750	323,850	20,625	47,244	31.805	17.170	20,625	15,875	296,875	292,100	312,750	317,500	2,14
	KT-118	301,625	344,475	23,800	44,704	32.250	18.327	20,625	28,575	315,925	310,134	330,200	338,328	3,01
	KT-130	330,200	369,875	21,412	36,576	24.821	17.259	21,412	15,088	341,325	338,328	358,775	363,220	2,36
	KT-132	336,550	381,000	23,800	42,926	27.401	16.236	23,800	19,050	352,425	346,075	365,125	368,300	3,08
	KT-151	384,175	441,325	28,575	43,688	52.311	30.426	28,575	20,625	400,050	396,875	425,450	428,625	6,15
	KT-165	419,100	476,250	22,225	45,212	36.564	20.551	22,403	20,625	438,150	431,800	460,375	469,900	5,05
	KT-180	457,200	498,475	20,625	42,926	32.917	19.261	20,625	17,450	468,325	466,725	487,375	490,220	3,71
	KT-200	508,000	552,450	20,625	45,720	35.274	19.572	20,625	17,450	523,875	517,525	536,575	539,750	4,44

Ab Lager – andere Abmessungen auf Anfrage.

Toleranzen: Bohrung: +0,0254 mm – 0,00 mm bis KT-110; +0,0508 mm – 0,00 mm für KT-110 bis KT-200 Außendurchmesser: wie Innendurchmesser.

Breite: $\pm 0,254$ mm bis KT-112; $\pm 0,381$ mm für KT-112 bis KT-200

Ring Radialer Rundlauf 0,0381 mm Max. F.I.M., Konus Radialer Rundlauf 0,0508 mm Max. F.I.M.

Anhang und Informationen

Begriffe und Definitionen	123
Anhang	124
Kataloganforderung	125
Anwendungsspezifikationen	126

Begriffe und Definitionen

Ablenkung:

Die Summe der Bewegungen in Verbindung mit Kompression oder Dehnung von Lagerkomponenten unter Last.

Axiallast:

Last, die parallel zur Lagerrotationsachse auf das Lager einwirkt – auch als Stoßkraft bezeichnet

Axialspiel:

Die Gesamtsumme freier axialer Bewegung zwischen Innen- und Außenring eines Lagers. Lager mit internem Spiel haben axiales und radiales Spiel.

Duchmessertoleranzen:

Der Bereich, in die der durchschnittliche Durchmesser einer Bohrung oder des Außendurchmessers fällt. REALI-SLIM® Lager sind als "nicht-steif" ausgelegt, und alle Durchmesser entsprechen im Mehrpunktmessverfahren im Durchschnitt ABMA Std. 26.2.

Kapazität:

Dynamische Kapazität ist grundsätzlich als "C" klassifiziert und gibt die Belastung wieder, der ein Lager theoretisch 1 Million Umdrehungen standhält. Statische Kapazität ist die ungefähre Belastung, der ein Lager bis zur dauerhaften Verformung durch Eindrücken der Kugeln in die Laufbahn standhält. Die genannten Werte gelten nicht für Hybridlager der Serien P, X, und Y. Kontaktieren Sie dafür bitte unsere Anwendungstechnik.

Laufkreisdurchmesser:

Der theoretische, mittlere Durchmesser eines Lagers, der durch das Zentrum der rollenden Teile (Kugeln, Rollen) geht. Der REALI-SLIM® Laufkreisdurchmesser ist equivalent zu: (Außendurchmesser+Bohrung)/2.

L₁₀ Lebensdauer:

Die theoretische Lebensdauer eines Lagers unter bestimmten dynamischen Betriebsbedingungen mit 90% iger Erlebenswahrscheinlichkeit.

Momentenbelastung:

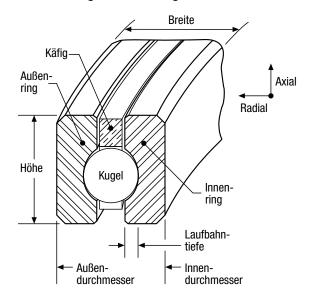
Eine Last, die ein Lagersystem in der Weise beeinflusst, dass die Rotationsachse kippt.

Radiallast:

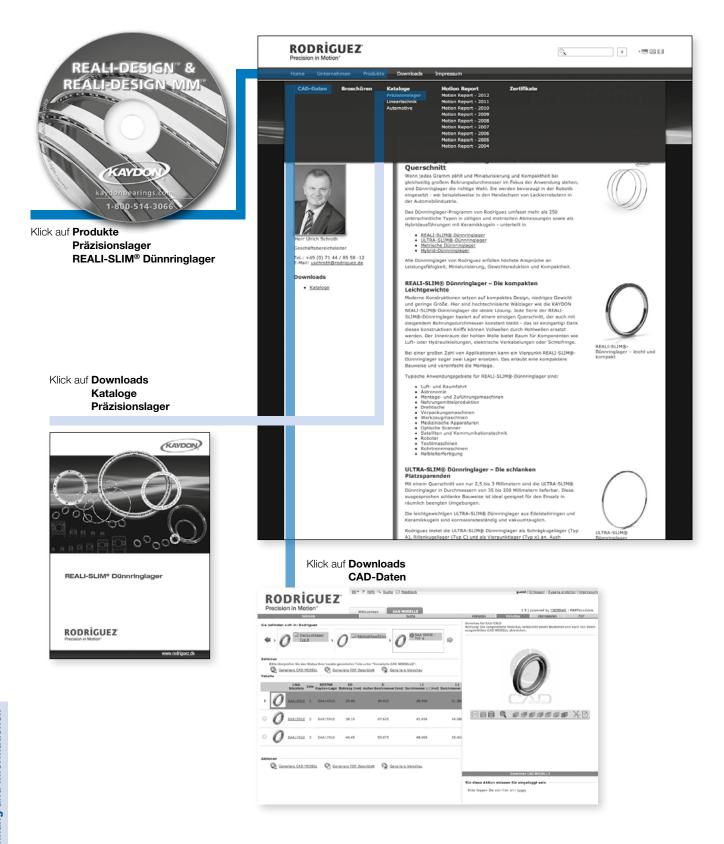
Die Last, die senkrecht zur Rotationsachse wirkt.

Radialspiel:

Die Gesamtsumme freier radialer Bewegung zwischen Innen- und Außenring eines Lagers, auch radiales Spiel genannt. "X" und "C" Typ Lager haben vor der Montage standardmäßig leichtes internes Lagerspiel.


Rundlauf:

Die maximale axiale oder radiale Wandstärkenschwankung der Lagerinnen – oder Außenringe. Der Rundlauf beeinflusst die Wiederholgenauigkeit der rotierenden Komponenten.


Vorspannung:

Die Summe der Lasten, die auf die Rollkörper im unmontierten Zustand ohne externe Lasten einwirkt. Vorspannung kann werksseitig durch Vermessen der Kugeln und Laufbahnen in "X" und "C" Typ Lager eingebracht werden. Vorspannung in Axiallagern wird durch den Spalt in gepaarten Lagern erreicht. Enge Einbauräume erhöhen die Lagervorspannung. Vorspannung erhöht die Steifigkeit des Lagers und verhindert axiales und radiales Spiel, aber die Last auf den Kugeln erhöht die Reibung und reduziert die L10 Lebensdauer.

Standard Lagerbezeichnungen

Für die neuesten Veröffentlichungen – Kataloge, Software, oder CAD Zeichnungen – besuchen Sie unsere Website www.rodriguez.de

Sie interessieren sich für das weitere RODRIGUEZ®-Lieferprogramm. Einfach die entsprechenden Kataloge ankreuzen. Wir senden Ihnen diese umgehend zu.

Firma:		Datum:
Adresse:		
Ansprechpartner: Frau / Herr		Funktion:
Tel.:	Fax:	

Mobil:

Linearkomponenten deutsch

Profilschienenführungen Kreuzrollenführungen D/E

☐ Elektrohubzylinder D/E

E-Mail:

Linearsysteme D/E

■ Kugelrollen D/E

☐ Kugelgewindetriebe D/E

■ Kugeldrehverbindungen D/E

Tel.: +49 (0)2403 780-0 · Fax: +49 (0)2403 780-860 · info@rodriguez.de · www.rodriguez.de

Anwendungsspezifikationen

Bitte beantworten Sie die nachfolgenden Fragen so genau wie möglich, eventuell mit Skizze Ihres Anwendungsfalls, damit wir das optimale Lager für Ihre Anwendung auswählen können.

RODRIGUEZ GmbH

Precision in Motion Ernst-Abbe-Straße 20 52249 Eschweiler Tel.: +49 (0)2403 780-0 Fax: +49 (0)2403 780-860 info@rodriguez.de

www.rodriguez.de

Firma:			Datum:	
Adresse:				
Ansprechpartner: Frau	/ Herr		Funktion:	
Tel.:		Fax:		
Mobil:		E-Mail:		
Anwendung Projekt:				
Testphase	Prototyp	Produktion	Spezialanwendung	Sonstiges
Verwendung:				
OEM	Wiederverkauf	Eigenbedarf	Ersatzbedarf	Sonstiges
Gewünschte Stückzahl	:	Gewünschter Liefer	termin:	
Belastungen:				
Radialbelastung	statisch		dynamisch	
Axialbelastung	statisch		dynamisch	
Momentenbelastung	statisch (max.)		dynamisch (dauernd)	
Falls die dynamischen E prozentualen Laufzeit a		sind, geben Sie uns bitt	e alle auftretenden Kräfte mit	der Angabe der
Treten Vibrations- oder	Schocklasten auf? Wel	che?		
Sicherheitsfaktor von		ist / ist nicht in	n den o.a. Belastungen inbeg	riffen.
Drehzahl:	n ⁻¹	max.	Dauer:	
oder sonstige Drehzahla	angaben mit jeweiliger L	_aufzeit		
Oszillation:	Winkel:	0	Frequenz:	

Anwendungsspezifikationen

Datum:

gef. Rundlaufgenauigkeit: Innen Außen zul. Lagerspiel: Radial Axial Lebensdauer: Stunden **Temperatur:** Normale Betriebstemperatur: Minimal Maximal Temperaturdifferenz zwischen Gehäuse und Lager: Schmierung: Vorgeschlagenes Schmiermittel: Schmierungsart: Gewünschte Größe: Lager: Bohrung: Außendurchmesser: Breite: Min. Bohrung: Max. Außendurchmesser: Max. Breite: Gewünschte Lagertype: Einbaulage der Lagerachse: vertikal / horizontal · Drehendes Teil: Außenring / Innenring Material: Welle: Gehäuse: **Besonderheit:** Zul. Laufmoment: Dichtung ■ Beschichtung/Korrosionsschutz Anforderung: Sonstiges:

Außen

Fortsetzung Anwendungsspezifikationen:

Firma:

Genauigkeit:

Kaydon - Genauigkeitsklasse:

oder: zul. Exzentrizität: Innen

Anwendungsspezifikationen

Skizze	

Notizen

Notizen	

RODRIGUEZ® GmbH

RODRIGUEZ® zählt mit seiner Erfahrung und hoher Kompetenz seit über 65 Jahren weltweit zu den führenden Anbietern von Dünnringlagern, Lineartechnik, Präzisions-Rollenlagern, Sonderlagern und Komponenten für die verschiedensten Industriebereiche. In der heutigen, durch technische Innovationen geprägten Zeit sind hervorragende Konstruktionslösungen gefragter denn je. Dabei gewinnt die kompetente Beratung über die richtige, kundenbezogene Wälzlager-Technologie eine immer größere Bedeutung. Zu den bedeutendsten Abnehmerbranchen gehören unter anderem:

Antriebstechnik

Automatisierung

Drucktechnik

Elektronik

Fahrzeugtechnik

Feinmechanik

Halbleitertechnik

Holzbearbeitung

Kunststofftechnik

Lebensmittelindustrie

Luft- und Raumfahrt

Maschinenbau

Medizintechnik

Messtechnik

Montage

Optik

Robotik

Verpackungstechnik

Werkzeugmaschinen

RODRIGUEZ® erkannte sehr früh, dass automatisierte Bewegungsabläufe immer präzisere Komponenten erfordern. Die Schlüsselqualifikation ist die Kundenorientierung und damit die objektive Beratung, Forschung, Entwicklung und Fertigung. Nur wer die Details kennt – so glauben wir – kann komplexe Konstruktionslösungen schaffen. Daher haben wir die Voraussetzungen für eine erfolgreiche Ingenieur-Beratung in allen Wälzlager-Fragen gemeinsam mit unseren Partnern in Theorie und Praxis erarbeitet.

Und: Praktizierte Kundennähe und hohe Flexibilität sind bei uns ebenso selbstverständlich wie ein beispielhafter Kundenservice.

Dünnringlager

Präzisionslager für Maschinenbau und Rundschalttische

Linearkomponenten/-systeme/-motoren

Sonderlager

Edelstahl & Polymer Gehäuseeinheiten

Kugelrollen

Deutschland

Zentrale und Fertigung

RODRIGUEZ GmbH

Ernst-Abbe-Str. 20 52249 Eschweiler Tel.: +49 (0)2403 780-0 Fax: +49 (0)2403 780-860 info@rodriguez.de www.rodriguez.de

Niederlassung Süd

RODRIGUEZ GmbH

Max-Eyth-Str. 8 71672 Marbach a. Neckar Tel.: +49 (0)7144 8558-0 Fax: +49 (0)7144 8558-20 info-sued@rodriguez.de

Frankreich

Rodriguez GmbH

29/31 Boulevard de la Paix Parc d'activités du Bel Air 78 100 Saint Germain En Laye Tel.: +33 (0)130 610616 Fax: +33 (0)130 615282 info_france@rodriguez.de www.rodriguez.de

USA

ICB Greenline

200 Forsyth Hall Drive, Suite E
Charlotte, NC 28273
Tel.: +1 704 333 3377
Fax: +1 704 334 6146
info@icb-usa.com
www.icb-usa.com
Mailing address
ICB/Greenline
PO Box 7648
Charlotte, NC 28241

Dünnringlager

Präzisionslager für Maschinenbau und Rundschalttische

Linearkomponenten/-systeme/-motoren

Sonderlager

Edelstahl & Polymer Gehäuseeinheiten

Kugelrollen

Vertrieb

Für die neuesten Veröffentlichungen – Kataloge, Software, oder CAD Zeichnungen – besuchen Sie unsere Website www.rodriguez.de

Dieser Katalog ist durch die RODRIGUEZ GmbH urheberrechtlich geschützt. Ohne schriftliche Genehmigung der RODRIGUEZ GmbH dürfen weder Abschnitte noch der gesamte Katalog nachgedruckt oder reproduziert werden. Für technische Änderungen oder Irrtümer kann keine Haftung übernommen werden, für Hinweise bedanken wir uns.
© RODRIGUEZ KY A1.4 2013 D